Skip to main content
Log in

MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d’Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System.

Upon arrival at asteroid Ryugu in 2018, MASCOT will be released from the HY2 spacecraft and gently descend by free fall from an altitude of about 100 m to the surface of the asteroid. After a few bounces, the lander will come to rest at the surface and perform its scientific investigations of the surface structure and mineralogical composition, the thermal behaviour and the magnetic properties by operating its four scientific instruments. Those include an IR imaging spectrometer (MicrOmega, IAS Paris), a camera (MASCAM, DLR Berlin), a radiometer (MARA, DLR Berlin) and a magnetometer (MASMAG, TU Braunschweig).

In order to allow optimized payload operations the thermal design of MASCOT is required to cope with the contrasting requirements of the 4-year cruise in cold environment versus the hot conditions on the surface of the asteroid. Operations up to 2 asteroid days (∼16 hours) based on a primary battery are currently envisaged. A mobility mechanism allows locomotion on the surface. The mechanism is supported by an attitude and motion sensing system and an intelligent autonomy manager, which is implemented in the onboard software that enables MASCOT to operate fully independently when ground intervention is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

ADC:

Analog-to-Digital Converter

CFRP:

Carbon-Fibre-Reinforced Plastic

CoG:

Center of Gravity

DC:

Direct Current

E-box:

Electronic Box

EM:

Engineering Model

EQM:

Engineering Quantification Model

FM:

Flight Model

FS:

Flight Spare

FPGA:

Field Programmable Gate Array

GNC:

Guidance, Navigation and Control

HY2:

Hayabusa2

LED:

Light-Emitting Diode

MAM:

MASCOT Autonomy Manager

MASCAM:

MASCOT CAMera

MARA:

MASCOT Radiometer

MASMAG:

MASCOT MAGnetometer

MLI:

Multi-Layer Insulation

MOSFET:

Metal-Oxide-Semiconductor Field-Effect Transistor

MSC:

MASCOT

NEA:

Non Explosive Actuator

OBC:

On-board Computer

OPS:

Optical Proximity Sensor

PCDU:

Power Conditioning and Distribution Unit

PCB:

Printed Circuit Board

PEC:

Photoelectric Cell Sensor

SAR:

Safe Activation Reaction

SDVF:

Software Design and Validation Facility

SLI:

Single Layer Insulation

UMC:

Umbilical Separation Connecter

References

  • M. Abe, Y. Takagi, K. Kitazato, S. Abe, T. Hiroi, F. Vilas, B.E. Clark, B.P.A. Abell, S.M. Lederer, K.S. Jarvis, T. Nimura, Y. Ueda, A. Fujiwara, Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312, 1334 (2006)

    Article  ADS  Google Scholar 

  • A. Accomazzo, P. Ferri, S. Lodiot et al., Rosetta operations at the comet. Acta Astronaut. 115, 434–441 (2015)

    Article  Google Scholar 

  • M.F. A’Hearn, M.J.S. Belton, A. Delamere, W.H. Blume, Deep Impact: a large-scale active experiment on a cometary nucleus. Space Sci. Rev. 117, 1 (2005a)

    Article  ADS  Google Scholar 

  • M.F. A’Hearn, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, P.H. Schultz, J.M. Sunshine, P.C. Thomas, J. Veverka, D.K. Yeomans, M.W. Baca, I. Busko, C.J. Crockett, S.M. Collins, M. Desnoyer, C.A. Eberhardy, C.M. Ernst, F.L. Farnham, L. Feaga, O. Groussin, D. Hampton, S.I. Ipatov, J-Y. Li, D. Lindler, C.M. Lisse, C.N. Mastrodemos, W.M. Owen, J.E. Richardson, D.D. Wellnitz, R.L. White, Deep Impact: excavating comet Tempel 1. Science 310, 258 (2005b)

    Article  ADS  Google Scholar 

  • M.A. Barucci, A.F. Cheng, P. Michel, L.A.M. Benner, R.P. Binzel, P.A. Bland, H. Böhnhardt, J.R. Brucato, A. Campo Bagatin, P. Cerroni, E. Dotto, A. Fitzsimmons, I. Franchi, S.F. Green, L.-M. Lara, J. Licandro, B. Marty, K. Muinonen, A. Nathues, J. Oberst, A.S. Rivkin, F. Robert, R. Saladino, J.M. Trigo-Rodriguez, S. Ulamec, M. Zolensky, MarcoPolo-R near Earth asteroid sample return mission. Exp. Astron. 33(2–3), 645–684 (2012)

    Article  ADS  Google Scholar 

  • J. Biele, S. Ulamec, Capabilities of Philae, the Rosetta lander. Space Sci. Rev. 138, 275–289 (2008)

    Article  ADS  Google Scholar 

  • J. Biele, S. Ulamec, M. Maibaum, R. Roll, L. Witte, J. Pablo Muñoz, W. Arnold, H.-U. Auster, C. Casas, C. Faber, C. Fantinati, F. Finke, H.-H. Fischer, K. Geurts, C. Güttler, P. Heinisch, A. Herique, S. Hviid, G. Kargl, M. Knapmeyer, J. Knollenberg, W. Kofman, N. Kömle, E. Kührt, V. Lommatsch, S. Mottola, R.P. de Santayana, E. Remetean, F. Scholten, K. Seidensticker, H. Sierks, T. Spohn, The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349, 9816 (2015)

    Article  Google Scholar 

  • D.E. Brownlee, F. Horz, R.L. Newburn, M. Zolensky, T. Duxbury, C. Thomas, S. Sandford, Z. Sekanina, P. Tsou, M. Hanner, M.B.C. Clark, S.F. Green, J. Kissel, Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust spacecraft. Science 304, 1764 (2004)

    Article  ADS  Google Scholar 

  • Y.I. Cho, Thermal modelling of high rate Li-SOCl2 primary cylindrical cells. J. Electrochem. Soc. 134(4), 771–779 (1987)

    Article  ADS  Google Scholar 

  • E.T. Eisenmann, Lithium–thionyl chloride battery. State-of-the-art assessment, Sandia report SAND96-0839•UC-400, March 1996

  • T. Evans, T. Nguyen et al., A mathematical model of a lithium/thionyl chloride primary cell. J. Electrochem. Soc. 136(2), 328–339 (1989)

    Article  Google Scholar 

  • M. Grott, J. Knollenber, B. Borgs, F. Hänschke, E. Kessler, J. Helbert, A. Maturilli, N. Müller. The MASCOT radiometer MARA for the Hayabusa 2 mission, this special issue (2016)

  • A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330 (2006)

    Article  ADS  Google Scholar 

  • K.-H. Glassmeier, H. Boöhnhardt, D. Koschny, E. Kuü hrt, I. Richter, The Rosetta mission: flying towards the origins of the Solar System. Space Sci. Rev. 128, 1–21 (2007)

    Article  ADS  Google Scholar 

  • J.T. Grundmann, J. Biele, R. Findlay, S. Fredon, T.-M. Ho, C. Krause, S. Ulamec, C. Ziach, One shot to an asteroid—MASCOT and the design of an exclusively battery powered small spacecraft in hardware design examples and operational consideration, in European Space Power Conference, #3051 (2014),

    Google Scholar 

  • D. Herčik, H.-U. Auster, J. Blum, K.-H. Fornacon, M. Fujimoto, K. Gebauer, C. Guttler, O. Hillenmaier, A. Hördt, I. Richter, B. Stoll, B. Weiss, K.-H. Glaßmeier, MasMag: the MASCOT magnetometer experiment, this special issue (2016)

  • R. Jaumann, J.P. Bibring, K.H. Glassmeier, M. Grott, T.M. Ho, S. Ulamec, N. Schmitz, H.U. Auster, J. Biele, H. Kuninaka, T. Okada, M. Yoshikawa, S. Watanabe, M. Fujimoto, T. Spohn, A. Koncz, A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 mission, in LPSC, vol. 1777 (2014), p. 1817

    Google Scholar 

  • R. Jaumann, N. Schmitz, A. Koncz, H. Michaelis, S. Schroeder, S. Mottola, F. Trauthan, H. Hoffmann, T. Roatsch, D. Jobs, J. Kachlicki, B. Pforte, R. Terzer, M. Tschentscher, S. Weisse, U. Mueller, T.-M. Ho, M. Grott, J.P. Bibring, J. Biele, S. Ulamec, B. Broll, A. Kruselburger, L. Perez-Prieto. The camera of the MASCOT asteroid lander on board Hayabusa-2, this special issue (2016)

  • H.-D. Joos, J. Bals, G. Looye, K. Schnepper, A. Varga, A multiobjective optimisation-based software environment for control systems design, in IEEE International Conference on Control Applications and International Symposium on Computer Aided Control Systems Design, Glasgow, Scotland, UK (2002), pp. 7–14

    Google Scholar 

  • H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, C. Jamar, D. Malaise, H.J. Reitsema, H.U. Schmidt, W.K.H. Schmidt, P. Seige, F.L. Whipple, K. Wilhelm, First Halley multicolour camera imaging results from Giotto. Nature 321, 326 (1986)

    Article  ADS  Google Scholar 

  • M. Lange, O. Mierheim, C.H. Hühne, MASCOT—structures design and qualification of an “organic” mobile lander platform for low gravity bodies, in Proc. of 13th European Conference on Space Structures, Materials & Environmental Testing. ESA SP-727, Braunschweig, Germany (2014)

    Google Scholar 

  • M. Lange et al., MASCOT—a lightweight multi-purpose lander platform, in Proc. of 12th European Conference on Space Structures, Materials & Environmental Testing, ESA, SP-691, Noordwijk, The Netherlands (2012)

    Google Scholar 

  • D.S. Lauretta (The OSIRIS-REx Team), An overview of the OSIRIS-Rex asteroid sample return mission, in 43rd Lunar and Planetary Science Conference, #2491 (2012)

    Google Scholar 

  • R. Lichtenheldt, B. Schäfer, Hammering beneath the surface of Mars—Modellbildung und Optimierung des HP3-Mole, in Kolloquium Getriebetechnik, vol. 10, ed. by L. Zentner, Ilmenau (2013), pp. 169–186. ISBN 978-3-86360-065-5

    Google Scholar 

  • R. Lichtenheldt, J. Spytek, J. Reill, Coaching MASCOT for broad-jumping: multi-criterial optimization of the arm trajectories for MASCOT’s hopping locomotion, in 11th Low-Cost Planetary Mission Conference, Berlin (2015)

    Google Scholar 

  • T. Okada, K. Shirai, Y. Yamamoto, T. Arai, K. Ogawa, K. Hosono, M. Kato, X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science 312, 1338 (2006)

    Article  ADS  Google Scholar 

  • R. Reinhard, The Giotto encounter with comet Halley. Nature 321, 313 (1986)

    Article  ADS  Google Scholar 

  • J. Saito, H. Miyamoto, R. Nakamura, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Hiraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, H. Akiyama, Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341 (2006)

    Article  ADS  Google Scholar 

  • R. Schulz, C. Alexander, H. Böhnhardt, K.-H. Glaßmeier (eds.), Rosetta—ESA’s Mission to the Origin of the Solar System (Springer, Berlin, 2009). ISBN 978-0-387-77517-3

    Google Scholar 

  • M. Schlotterer, R. Findlay Ross, T.M. Ho, L. Witte, C. Ziach, Histogram filter for attitude determination of small asteroid lander, in 9th International ESA Conference on Guidance, Navigation & Control Systems. 2.–6. Juni 2014, Porto, Portugal (2014)

    Google Scholar 

  • P.H. Schultz, C.A. Eberhardy, C.M. Ernst, M.F. A’Hearn, J.M. Sunshine, C.M. Lisse, The Deep Impact oblique impact cratering experiment. Icarus 191, 84 (2007)

    Article  ADS  Google Scholar 

  • H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, F. Angrilli, A.-T. Auger, M.A. Barucci, J.-L. Bertaux, I. Bertini, S. Besse, D. Bodewits, C. Capanna, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, F. Ferri, S. Fornasier, M. Fulle, R. Gaskell, L. Giacomini, O. Groussin, P. Gutierrez-Marques, P.J. Gutiérrez, C. Güttler, N. Hoekzema, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J.R. Kramm, E. Kührt, M. Küppers, F. La Forgia, L.M. Lara, M. Lazzarin, C. Leyrat, J.J. Lopez Moreno, S. Magrin, S. Marchi, F. Marzari, M. Massironi, H. Michalik, R. Moissl, S. Mottola, G. Naletto, N. Oklay, M. Pajola, M. Pertile, F. Preusker, L. Sabau, F. Scholten, C. Snodgrass, N. Thomas, C. Tubiana, J.B. Vincent, K.P. Wenzel, M. Zaccariotto, M. Pätzold, On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, 6220 (2015)

    Article  Google Scholar 

  • R.M. Spotnitz, G.S. Yeduvaka, G. Nagasubramanian, R. Jungst, Modeling self-discharge of Li/SOCl2 cells. J. Power Sources 163, 578 (2006)

    Article  ADS  Google Scholar 

  • J.M. Sunshine, O. Groussin, P.H. Schultz, M.F. A’Hearn, L.M. Feaga, T.L. Farnham, K.P. Klaasen, The distribution of water ice in the interior of comet Tempel 1. Icarus 191, 73 (2007)

    Article  ADS  Google Scholar 

  • Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa2—asteroid sample return mission to 1999JU3. Acta Astronaut. 91, 356–362 (2013)

    Article  ADS  Google Scholar 

  • S. Ulamec, J. Biele, Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 47, 847–858 (2009)

    Article  ADS  Google Scholar 

  • S. Ulamec, J. Biele, P.-W. Bousquet, P. Gaudon, K. Geurts, T.-M. Ho, C. Krause, C. Lange, R. Willnecker, L. Witte, Landing on small bodies: from the Rosetta lander to MASCOT and beyond. Acta Astronaut. 93, 460–466 (2014)

    Article  ADS  Google Scholar 

  • S. Ulamec, J. Biele, A. Blazquez, B. Cozzoni, C. Fantinati, P. Gaudon, K. Geurts, E. Jurado, O. Küchemann, V. Lommatsch, M. Maibaum, H. Sierks, L. Witte, Rosetta lander—Philae: landing preparations. Acta Astron. 107, 79–86 (2015)

    Article  Google Scholar 

  • J. Veverka, M. Belton, K. Klaasen, C. Chapman, Galileo’s encounter with 951 Gaspra: overview. Icarus 107(1), 2–17 (1994)

    Article  ADS  Google Scholar 

  • T. Yoshimitsu, T. Kubota, I. Nakatani, The operation and scientific data of MINERVA rover in Hayabusa mission, in 36th COSPAR Scientific Assembly, #2987 (2006)

    Google Scholar 

Download references

Acknowledgements

MASCOT was developed and built under the leadership of the German Aerospace Center (DLR) with contributions (battery and PCDU subsystems) from the Centre National d’Études Spatiales (CNES) and Japan Aerospace Exploration Agency (JAXA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tra-Mi Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, TM., Baturkin, V., Grimm, C. et al. MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission. Space Sci Rev 208, 339–374 (2017). https://doi.org/10.1007/s11214-016-0251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0251-6

Keywords

Navigation