Skip to main content
Log in

Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth’s inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of oblique waves can significantly change the rates of particle scattering, acceleration, and precipitation into the atmosphere during quiet times as well as in the course of a storm. Finally, we discuss possible generation mechanisms for such oblique waves in the radiation belts. We demonstrate that oblique whistler-mode chorus waves can be considered as an important ingredient of the radiation belt system and can play a key role in many aspects of wave-particle resonant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  • G.A. Abel, A.N. Fazakerley, A.D. Johnstone, Statistical distributions of field-aligned electron events in the near-equatorial magnetosphere observed by the Low Energy Plasma Analyzer on CRRES. J. Geophys. Res. 107, 1393 (2002). doi:10.1029/2001JA005073

    Article  Google Scholar 

  • O.V. Agapitov, A.V. Artemyev, D. Mourenas, Y. Kasahara, V. Krasnoselskikh, Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves. J. Geophys. Res. 119, 2876–2893 (2014). doi:10.1002/2014JA019886

    Article  Google Scholar 

  • O.V. Agapitov, A.V. Artemyev, D. Mourenas, F.S. Mozer, V. Krasnoselskikh, Empirical model of lower band chorus wave distribution in the outer radiation belt. J. Geophys. Res. 120, 10 (2015a). doi:10.1002/2015JA021829

    Article  Google Scholar 

  • O.V. Agapitov, V. Krasnoselskikh, F.S. Mozer, A.V. Artemyev, A.S. Volokitin, Generation of nonlinear electric field bursts in the outer radiation belt through the parametric decay of whistler waves. Geophys. Res. Lett. 42, 3715–3722 (2015b). doi:10.1002/2015GL064145

    Article  ADS  Google Scholar 

  • O.V. Agapitov, A.V. Artemyev, D. Mourenas, F.S. Mozer, V. Krasnoselskikh, Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt. Geophys. Res. Lett. 42, 10 (2015c). doi:10.1002/2015GL066887

    Google Scholar 

  • O. Agapitov, V. Krasnoselskikh, Y. Zaliznyak, V. Angelopoulos, O. Le Contel, G. Rolland, Chorus source region localization in the Earth’s outer magnetosphere using THEMIS measurements. Ann. Geophys. 28, 1377–1386 (2010)

    Article  ADS  Google Scholar 

  • O. Agapitov, V. Krasnoselskikh, Y. Zaliznyak, V. Angelopoulos, O. Le Contel, G. Rolland, Observations and modeling of forward and reflected chorus waves captured by THEMIS. Ann. Geophys. 29, 541–550 (2011). doi:10.5194/angeo-29-541-2011

    Article  ADS  Google Scholar 

  • O. Agapitov, V. Krasnoselskikh, Y.V. Khotyaintsev, G. Rolland, Correction to “A statistical study of the propagation characteristics of whistler waves observed by Cluster”. Geophys. Res. Lett. 39, 24102 (2012). doi:10.1029/2012GL054320

    Article  ADS  Google Scholar 

  • O. Agapitov, A. Artemyev, V. Krasnoselskikh, Y.V. Khotyaintsev, D. Mourenas, H. Breuillard, M. Balikhin, G. Rolland, Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements. J. Geophys. Res. 118, 3407–3420 (2013). doi:10.1002/jgra.50312

    Article  Google Scholar 

  • O. Agapitov, A. Artemyev, D. Mourenas, V. Krasnoselskikh, J. Bonnell, O. Le Contel, C.M. Cully, V. Angelopoulos, The quasi-electrostatic mode of chorus waves and electron nonlinear acceleration. J. Geophys. Res. 119, 1606–1626 (2014). doi:10.1002/2013JA019223

    Article  Google Scholar 

  • J. Aguado, C. Cid, E. Saiz, Y. Cerrato, Hyperbolic decay of the Dst Index during the recovery phase of intense geomagnetic storms. J. Geophys. Res. 115, 7220 (2010). doi:10.1029/2009JA014658

    Article  Google Scholar 

  • J.M. Albert, Cyclotron resonance in an inhomogeneous magnetic field. Phys. Fluids, B Plasma Phys. 5, 2744–2750 (1993). doi:10.1063/1.860715

    Article  Google Scholar 

  • J.M. Albert, Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. J. Geophys. Res. 105, 21191 (2000). doi:10.1029/2000JA000008

    Article  ADS  Google Scholar 

  • J.M. Albert, Nonlinear interaction of outer zone electrons with VLF waves. Geophys. Res. Lett. 29, 1275 (2002). doi:10.1029/2001GL013941

    Article  ADS  Google Scholar 

  • J.M. Albert, Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio. J. Geophys. Res. 110, 3218 (2005). doi:10.1029/2004JA010844

    Article  Google Scholar 

  • J.M. Albert, Simple approximations of quasi-linear diffusion coefficients. J. Geophys. Res. 112, 12202 (2007). doi:10.1029/2007JA012551

    Article  Google Scholar 

  • J.M. Albert, Diffusion by one wave and by many waves. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA014732

  • J.M. Albert, Dependence of quasi-linear diffusion coefficients on wave parameters. J. Geophys. Res. 117, 9224 (2012). doi:10.1029/2012JA017718

    Article  Google Scholar 

  • J.M. Albert, Y.Y. Shprits, Estimates of lifetimes against pitch angle diffusion. J. Atmos. Sol.-Terr. Phys. 71, 1647–1652 (2009). doi:10.1016/j.jastp.2008.07.004

    Article  ADS  Google Scholar 

  • J.M. Albert, N.P. Meredith, R.B. Horne, Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res. 114, 9214 (2009). doi:10.1029/2009JA014336

    Article  Google Scholar 

  • J.M. Albert, X. Tao, J. Bortnik, Aspects of nonlinear wave-particle interactions, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by D. Summers, I.U. Mann, D.N. Baker, M. Schulz American Geophysical Union (2013). doi:10.1029/2012GM001324

    Google Scholar 

  • J.K. Alekhin, D.R. Shklyar, Some questions of VLF wave propagation in the magnetosphere. Geomagn. Aeron. 20, 501–507 (1980)

    ADS  Google Scholar 

  • X. An, B. Van Compernolle, J. Bortnik, R.M. Thorne, L. Chen, W. Li, Resonant excitation of whistler waves by a helical electron beam. Geophys. Res. Lett. 121 (2015). doi:10.1002/2015GL067126

  • M.E. Andersson, P.T. Verronen, C.J. Rodger, M.A. Clilverd, S. Wang, Longitudinal hotspots in the mesospheric oh variations due to energetic electron precipitation. Atmos. Chem. Phys. 14(2), 1095–1105 (2014). doi:10.5194/acp-14-1095-2014. http://www.atmos-chem-phys.net/14/1095/2014/

    Article  ADS  Google Scholar 

  • A.A. Andronov, V.Y. Trakhtengerts, Kinetic instability of the Earth’s outer radiation belt. Geomagn. Aeron. 4, 233–242 (1964)

    Google Scholar 

  • V. Angelopoulos, The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008). doi:10.1007/s11214-008-9336-1

    Article  ADS  Google Scholar 

  • J.J. Angerami, Whistler duct properties deduced from VLF observations made with the Ogo 3 satellite near the magnetic equator. J. Geophys. Res. 75, 6115–6135 (1970). doi:10.1029/JA075i031p06115

    Article  ADS  Google Scholar 

  • S.V. Apatenkov, V.A. Sergeev, M.V. Kubyshkina, R. Nakamura, W. Baumjohann, A. Runov, I. Alexeev, A. Fazakerley, H. Frey, S. Muhlbachler, P.W. Daly, J. Sauvaud, N. Ganushkina, T. Pulkkinen, G.D. Reeves, Y. Khotyaintsev, Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere. Ann. Geophys. 25, 801–814 (2007)

    Article  ADS  Google Scholar 

  • V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Dynamical Systems III. Encyclopedia of Mathematical Sciences (Springer, New York, 2006)

    MATH  Google Scholar 

  • A.V. Artemyev, A.A. Vasiliev, D. Mourenas, O. Agapitov, V. Krasnoselskikh, Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance. Phys. Plasmas 20, 122901 (2013a). doi:10.1063/1.4836595

    Article  ADS  Google Scholar 

  • A.V. Artemyev, D. Mourenas, O.V. Agapitov, V.V. Krasnoselskikh, Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves. Ann. Geophys. 31, 599–624 (2013b). doi:10.5194/angeo-31-599-2013

    Article  ADS  Google Scholar 

  • A.V. Artemyev, O.V. Agapitov, D. Mourenas, V. Krasnoselskikh, L.M. Zelenyi, Storm-induced energization of radiation belt electrons: effect of wave obliquity. Geophys. Res. Lett. 40, 4138–4143 (2013c). doi:10.1002/grl.50837

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Vasiliev, D. Mourenas, O.V. Agapitov, V.V. Krasnoselskikh, Electron scattering and nonlinear trapping by oblique whistler waves: the critical wave intensity for nonlinear effects. Phys. Plasmas 21(10), 102903 (2014a). doi:10.1063/1.4897945

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Vasiliev, D. Mourenas, O. Agapitov, V. Krasnoselskikh, D. Boscher, G. Rolland, Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves. Geophys. Res. Lett. 41, 5727–5733 (2014b). doi:10.1002/2014GL061380

    Article  ADS  Google Scholar 

  • A.V. Artemyev, O. Agapitov, F. Mozer, V. Krasnoselskikh, Thermal electron acceleration by localized bursts of electric field in the radiation belts. Geophys. Res. Lett. 41, 5734–5739 (2014c). doi:10.1002/2014GL061248

    Article  ADS  Google Scholar 

  • A.V. Artemyev, A.A. Vasiliev, D. Mourenas, A.I. Neishtadt, O.V. Agapitov, V. Krasnoselskikh, Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth’s radiation belts. Phys. Plasmas 22(11), 112903 (2015a). doi:10.1063/1.4935842

    Article  ADS  Google Scholar 

  • A.V. Artemyev, D. Mourenas, O.V. Agapitov, V.V. Krasnoselskikh, Relativistic electron scattering by magnetosonic waves: effects of discrete wave emission and high wave amplitudes. Phys. Plasmas 22, 062901 (2015b). doi:10.1063/1.4922061

    Article  ADS  Google Scholar 

  • A.V. Artemyev, D. Mourenas, O.V. Agapitov, D.L. Vainchtein, F.S. Mozer, V.V. Krasnoselskikh, Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves. Phys. Plasmas 22, 082901 (2015c). doi:10.1063/1.4927774

    Article  ADS  Google Scholar 

  • A.V. Artemyev, O.V. Agapitov, D. Mourenas, V.V. Krasnoselskikh, F.S. Mozer, Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy. Nat. Commun. 6, 8143 (2015d). doi:10.1038/ncomms8143

    Article  ADS  Google Scholar 

  • A. Artemyev, O. Agapitov, H. Breuillard, V. Krasnoselskikh, G. Rolland, Electron pitch-angle diffusion in radiation belts: the effects of whistler wave oblique propagation. Geophys. Res. Lett. 39, 8105 (2012a). doi:10.1029/2012GL051393

    Article  ADS  Google Scholar 

  • A. Artemyev, V. Krasnoselskikh, O. Agapitov, D. Mourenas, G. Rolland, Non-diffusive resonant acceleration of electrons in the radiation belts. Phys. Plasmas 19, 122901 (2012b). doi:10.1063/1.4769726

    Article  ADS  Google Scholar 

  • A. Artemyev, O. Agapitov, V. Krasnoselskikh, H. Breuillard, G. Rolland, Statistical model of electron pitch-angle diffusion in the outer radiation belt. J. Geophys. Res. 117, 08219 (2012c). doi:10.1029/2012JA017826

    Google Scholar 

  • H. Aryan, K. Yearby, M. Balikhin, O. Agapitov, V. Krasnoselskikh, R. Boynton, Statistical study of chorus wave distributions in the inner magnetosphere using Ae and solar wind parameters. J. Geophys. Res. 119, 6131–6144 (2014). doi:10.1002/2014JA019939

    Article  Google Scholar 

  • D.N. Baker, S.G. Kanekal, X. Li, S.P. Monk, J. Goldstein, J.L. Burch, An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature 432, 878–881 (2004). doi:10.1038/nature03116

    Article  ADS  Google Scholar 

  • D.N. Baker, S.G. Kanekal, V.C. Hoxie, S. Batiste, M. Bolton, X. Li, S.R. Elkington, S. Monk, R. Reukauf, S. Steg, J. Westfall, C. Belting, B. Bolton, D. Braun, B. Cervelli, K. Hubbell, M. Kien, S. Knappmiller, S. Wade, B. Lamprecht, K. Stevens, J. Wallace, A. Yehle, H.E. Spence, R. Friedel, The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: characterization of Earth’s radiation belt high-energy particle populations. Space Sci. Rev. 179, 337–381 (2013). doi:10.1007/s11214-012-9950-9

    Article  ADS  Google Scholar 

  • D.N. Baker, A.N. Jaynes, X. Li, M.G. Henderson, S.G. Kanekal, G.D. Reeves, H.E. Spence, S.G. Claudepierre, J.F. Fennell, M.K. Hudson, R.M. Thorne, J.C. Foster, P.J. Erickson, D.M. Malaspina, J.R. Wygant, A. Boyd, C.A. Kletzing, A. Drozdov, Y.Y. Shprits, Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: van Allen probes observations. Geophys. Res. Lett. 41, 1351–1358 (2014). doi:10.1002/2013GL058942

    Article  ADS  Google Scholar 

  • M.F. Bakhareva, Time variations in energetic particle fluxes at different types of statistical acceleration and the variation properties during geomagnetic disturbances. Geomagn. Aeron. 45, 551–561 (2005)

    Google Scholar 

  • M.A. Balikhin, M. Gedalin, G.D. Reeves, R.J. Boynton, S.A. Billings, Time scaling of the electron flux increase at GEO: the local energy diffusion model vs observations. J. Geophys. Res. 117, 10208 (2012). doi:10.1029/2012JA018114

    Google Scholar 

  • M.A. Balikhin, Y.Y. Shprits, S.N. Walker, L. Chen, N. Cornilleau-Wehrlin, I. Dandouras, O. Santolik, C. Carr, K.H. Yearby, B. Weiss, Observations of discrete harmonics emerging from equatorial noise. Nat. Commun. 6, 7703 (2015). doi:10.1038/ncomms8703

    Article  ADS  Google Scholar 

  • T.F. Bell, The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the Earth’s magnetic field. J. Geophys. Res. 89, 905–918 (1984). doi:10.1029/JA089iA02p00905

    Article  ADS  Google Scholar 

  • T.F. Bell, The wave magnetic field amplitude threshold for nonlinear trapping of energetic gyroresonant and Landau resonant electrons by nonducted VLF waves in the magnetosphere. J. Geophys. Res. 91, 4365–4379 (1986). doi:10.1029/JA091iA04p04365

    Article  ADS  Google Scholar 

  • T.F. Bell, U.S. Inan, J. Bortnik, J.D. Scudder, The Landau damping of magnetospherically reflected whistlers within the plasmasphere. Geophys. Res. Lett. 29, 1733 (2002). doi:10.1029/2002GL014752

    Article  ADS  Google Scholar 

  • P.A. Bespalov, V.I. Trakhtengerts, Cherenkov generation of ELF and VLF emissions in the magnetosphere. Geomagn. Aeron. 15, 313–316 (1975)

    ADS  Google Scholar 

  • J. Birn, A.V. Artemyev, D.N. Baker, M. Echim, M. Hoshino, L.M. Zelenyi, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49–102 (2012). doi:10.1007/s11214-012-9874-4

    Article  ADS  Google Scholar 

  • J.B. Blake, P.A. Carranza, S.G. Claudepierre, J.H. Clemmons, W.R. Crain, Y. Dotan, J.F. Fennell, F.H. Fuentes, R.M. Galvan, J.S. George, M.G. Henderson, M. Lalic, A.Y. Lin, M.D. Looper, D.J. Mabry, J.E. Mazur, B. McCarthy, C.Q. Nguyen, T.P. O’Brien, M.A. Perez, M.T. Redding, J.L. Roeder, D.J. Salvaggio, G.A. Sorensen, H.E. Spence, S. Yi, M.P. Zakrzewski, The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Sci. Rev. 179, 383–421 (2013). doi:10.1007/s11214-013-9991-8

    Article  ADS  Google Scholar 

  • J. Bortnik, R.M. Thorne, The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J. Atmos. Sol.-Terr. Phys. 69, 378–386 (2007). doi:10.1016/j.jastp.2006.05.030

    Article  ADS  Google Scholar 

  • J. Bortnik, U.S. Inan, T.F. Bell, Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere. J. Geophys. Res. 108, 1030 (2003). doi:10.1029/2002JA009387

    Article  Google Scholar 

  • J. Bortnik, U.S. Inan, T.F. Bell, Landau damping and resultant unidirectional propagation of chorus waves. Geophys. Res. Lett. 33, 3102 (2006). doi:10.1029/2005GL024553

    Article  ADS  Google Scholar 

  • J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35, 21102 (2008). doi:10.1029/2008GL035500

    Article  ADS  Google Scholar 

  • J. Boskova, F. Jiricek, P. Triska, B.V. Lundin, D.R. Shkliar, A possible common nature of equatorial half-gyrofrequency VLF emissions and discrete plasmaspheric emissions. Ann. Geophys. 8, 755–763 (1990)

    ADS  Google Scholar 

  • J. Bošková, F. Jiříček, P. Tříska, B.V. Lundin, D.R. Shklyar, M. Hvoždara, On the problem of quasi-electrostatic whistler mode waves: a possible interpretation of discrete plasmaspheric emissions. Stud. Geophys. Geod. 32, 199–212 (1988). doi:10.1007/BF01637582

    Article  Google Scholar 

  • H. Breuillard, Y. Zaliznyak, V. Krasnoselskikh, O. Agapitov, A. Artemyev, G. Rolland, Chorus wave-normal statistics in the Earth’s radiation belts from ray tracing technique. Ann. Geophys. 30, 1223–1233 (2012). doi:10.5194/angeo-30-1223-2012

    Article  ADS  Google Scholar 

  • H. Breuillard, Y. Zaliznyak, O. Agapitov, A. Artemyev, V. Krasnoselskikh, G. Rolland, Spatial spreading of magnetospherically reflected chorus elements in the inner magnetosphere. Ann. Geophys. 31, 1429–1435 (2013). doi:10.5194/angeo-31-1429-2013

    Article  ADS  Google Scholar 

  • H. Breuillard, O. Agapitov, A. Artemyev, V. Krasnoselskikh, O. Le Contel, C.M. Cully, V. Angelopoulos, Y. Zaliznyak, G. Rolland, On the origin of falling-tone chorus elements in Earth’s inner magnetosphere. Ann. Geophys. 32, 1477–1485 (2014). doi:10.5194/angeo-32-1477-2014

    Article  ADS  Google Scholar 

  • H. Breuillard, O. Agapitov, A. Artemyev, E.A. Kronberg, S.E. Haaland, P.W. Daly, V.V. Krasnoselskikh, D. Boscher, S. Bourdarie, Y. Zaliznyak, G. Rolland, Field-aligned chorus wave spectral power in Earth’s outer radiation belt. Ann. Geophys. 33(5), 583–597 (2015). doi:10.5194/angeo-33-583-2015. http://www.ann-geophys.net/33/583/2015/

    Article  ADS  Google Scholar 

  • A.L. Brinca, On the evolution of the geomagnetospheric coherent cyclotron resonance in the midst of noise. J. Geophys. Res. 85, 4711–4714 (1980). doi:10.1029/JA085iA09p04711

    Article  ADS  Google Scholar 

  • N.L. Bunch, M. Spasojevic, Y.Y. Shprits, Off-equatorial chorus occurrence and wave amplitude distributions as observed by the Polar Plasma Wave Instrument. J. Geophys. Res. 117, 4205 (2012). doi:10.1029/2011JA017228

    Article  Google Scholar 

  • N.L. Bunch, M. Spasojevic, Y.Y. Shprits, X. Gu, F. Foust, The spectral extent of chorus in the off-equatorial magnetosphere. J. Geophys. Res. 118, 1700–1705 (2013). doi:10.1029/2012JA018182

    Article  Google Scholar 

  • W.J. Burtis, R.A. Helliwell, Banded chorus—a new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3. J. Geophys. Res. 74, 3002 (1969). doi:10.1029/JA074i011p03002

    Article  ADS  Google Scholar 

  • R.K. Burton, R.E. Holzer, The origin and propagation of chorus in the outer magnetosphere. J. Geophys. Res. 79, 1014–1023 (1974). doi:10.1029/JA079i007p01014

    Article  ADS  Google Scholar 

  • D.L. Carpenter, T.F. Bell, T.R. Miller, R.R. Anderson, A comparison of equatorial electron densities measured by whistlers and by a satellite radio technique. Geophys. Res. Lett. 8, 1107–1110 (1981). doi:10.1029/GL008i010p01107

    Article  ADS  Google Scholar 

  • C.A. Cattell, A.W. Breneman, S.A. Thaller, J.R. Wygant, C.A. Kletzing, W.S. Kurth, Van Allen probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: statistical study. Geophys. Res. Lett. 42, 7273–7281 (2015). doi:10.1002/2015GL065565

    Article  ADS  Google Scholar 

  • C. Cattell, J.R. Wygant, K. Goetz, K. Kersten, P.J. Kellogg, T. von Rosenvinge, S.D. Bale, I. Roth, M. Temerin, M.K. Hudson, R.A. Mewaldt, M. Wiedenbeck, M. Maksimovic, R. Ergun, M. Acuna, C.T. Russell, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35, 1105 (2008). doi:10.1029/2007GL032009

    Article  ADS  Google Scholar 

  • L. Chen, R.M. Thorne, W. Li, J. Bortnik, Modeling the wave normal distribution of chorus waves. J. Geophys. Res. 118, 1074–1088 (2013). doi:10.1029/2012JA018343

    Article  Google Scholar 

  • Y. Chen, G.D. Reeves, R.H.W. Friedel, The energization of relativistic electrons in the outer van Allen radiation belt. Nat. Phys. 3, 614–617 (2007). doi:10.1038/nphys655

    Article  Google Scholar 

  • N. Cornilleau-Wehrlin, G. Chanteur, S. Perraut, L. Rezeau, P. Robert, A. Roux, C. de Villedary, P. Canu, M. Maksimovic, Y. de Conchy, D.H.C. Lacombe, F. Lefeuvre, M. Parrot, J.L. Pinçon, P.M.E. Décréau, C.C. Harvey, P. Louarn, O. Santolik, H.S.C. Alleyne, M. Roth, T. Chust, O. Le Contel, Staff Team, First results obtained by the Cluster STAFF experiment. Ann. Geophys. 21, 437–456 (2003). doi:10.5194/angeo-21-437-2003

    Article  ADS  Google Scholar 

  • C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett. 35, 17 (2008). doi:10.1029/2008GL033643

    Article  Google Scholar 

  • C.M. Cully, V. Angelopoulos, U. Auster, J. Bonnell, O. Le Contel, Observational evidence of the generation mechanism for rising-tone chorus. Geophys. Res. Lett. 38, 1106 (2011). doi:10.1029/2010GL045793

    Article  ADS  Google Scholar 

  • I.A. Daglis, R.M. Thorne, W. Baumjohann, S. Orsini, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37, 407–438 (1999). doi:10.1029/1999RG900009

    Article  ADS  Google Scholar 

  • F. Darrouzet, D.L. Gallagher, N. André, D.L. Carpenter, I. Dandouras, P.M.E. Décréau, J. de Keyser, R.E. Denton, J.C. Foster, J. Goldstein, M.B. Moldwin, B.W. Reinisch, B.R. Sandel, J. Tu, Plasmaspheric density structures and dynamics: properties observed by the CLUSTER and IMAGE missions. Space Sci. Rev. 145, 55–106 (2009). doi:10.1007/s11214-008-9438-9

    Article  ADS  Google Scholar 

  • G.T. Davidson, An improved empirical description of the bounce motion of trapped particles. J. Geophys. Res. 81, 4029 (1976). doi:10.1029/JA081i022p04029

    Article  ADS  Google Scholar 

  • A.G. Demekhov, Generation of VLF emissions with the increasing and decreasing frequency in the magnetosperic cyclotron maser in the backward wave oscillator regime. Radiophys. Quantum Electron. 53, 609–622 (2011). doi:10.1007/s11141-011-9256-x

    Article  ADS  Google Scholar 

  • A.G. Demekhov, V.Y. Trakhtengerts, Dynamics of the magnetospheric cyclotron ELF/VLF maser in the backward-wave-oscillator regime. II. The influence of the magnetic-field inhomogeneity. Radiophys. Quantum Electron. 51, 880–889 (2008). doi:10.1007/s11141-009-9093-3

    Article  ADS  Google Scholar 

  • A.G. Demekhov, V.Y. Trakhtengerts, M.J. Rycroft, D. Nunn, Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency. Geomagn. Aeron. 46, 711–716 (2006). doi:10.1134/S0016793206060053

    Article  ADS  Google Scholar 

  • A.G. Demekhov, V.Y. Trakhtengerts, M. Rycroft, D. Nunn, Efficiency of electron acceleration in the Earth’s magnetosphere by whistler mode waves. Geomagn. Aeron. 49, 24–29 (2009). doi:10.1134/S0016793209010034

    Article  ADS  Google Scholar 

  • M.H. Denton, J.E. Borovsky, R.M. Skoug, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.L. McPherron, J.C. Zhang, M.W. Liemohn, Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. 111, 7 (2006a). doi:10.1029/2005JA011436

    Article  Google Scholar 

  • R.E. Denton, K. Takahashi, I.A. Galkin, P.A. Nsumei, X. Huang, B.W. Reinisch, R.R. Anderson, M.K. Sleeper, W.J. Hughes, Distribution of density along magnetospheric field lines. J. Geophys. Res. 111, 4213 (2006b). doi:10.1029/2005JA011414

    Article  Google Scholar 

  • D. Dolgopyat, Repulsion from resonances, in Memoires de la Societe Mathematique de France, vol. 128 (2012)

    Google Scholar 

  • R.L. Dowden, Detrapping by an additional wave of wave-trapped electrons. J. Geophys. Res. 87, 6237–6242 (1982). doi:10.1029/JA087iA08p06237

    Article  ADS  Google Scholar 

  • J.F. Drake, O.V. Agapitov, F.S. Mozer, The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves. Geophys. Res. Lett. 42, 2563–2570 (2015). doi:10.1002/2015GL063528

    Article  ADS  Google Scholar 

  • W.E. Drummond, D. Pines, Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 1049–1058 (1962)

    Google Scholar 

  • K.B. Dysthe, Some studies of triggered whistler emissions. J. Geophys. Res. 76, 6915–6931 (1971). doi:10.1029/JA076i028p06915

    Article  ADS  Google Scholar 

  • J. Eeckhout, Gibrat’s law for (all) cities. Am. Econ. Rev. 94(5), 1429–1451 (2004). www.jstor.org/stable/3592829

    Article  Google Scholar 

  • R.E. Ergun, G.T. Delory, E. Klementis, C.W. Carlson, J.P. McFadden, I. Roth, M. Temerin, VLF wave growth from dispersive bursts of field-aligned electron fluxes. J. Geophys. Res. 98, 3777–3787 (1993). doi:10.1029/92JA02193

    Article  ADS  Google Scholar 

  • H.S. Fu, J.B. Cao, Z. Zhima, Y.V. Khotyaintsev, V. Angelopoulos, O. Santolík, Y. Omura, U. Taubenschuss, L. Chen, S.Y. Huang, First observation of rising-tone magnetosonic waves. Geophys. Res. Lett. 41, 7419–7426 (2014a). doi:10.1002/2014GL061867

    Article  ADS  Google Scholar 

  • X. Fu, M.M. Cowee, R.H. Friedel, H.O. Funsten, S.P. Gary, G.B. Hospodarsky, C. Kletzing, W. Kurth, B.A. Larsen, K. Liu, E.A. MacDonald, K. Min, G.D. Reeves, R.M. Skoug, D. Winske, Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations. J. Geophys. Res. 119 (2014b). doi:10.1002/2014JA020364

  • X. Fu, Z. Guo, C. Dong, S.P. Gary, Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus. Geophys. Res. Lett. 42, 3150–3159 (2015). doi:10.1002/2015GL064182

    Article  ADS  Google Scholar 

  • H.O. Funsten, R.M. Skoug, A.A. Guthrie, E.A. MacDonald, J.R. Baldonado, R.W. Harper, K.C. Henderson, K.H. Kihara, J.E. Lake, B.A. Larsen, A.D. Puckett, V.J. Vigil, R.H. Friedel, M.G. Henderson, J.T. Niehof, G.D. Reeves, M.F. Thomsen, J.J. Hanley, D.E. George, J.-M. Jahn, S. Cortinas, A. De Los Santos, G. Dunn, E. Edlund, M. Ferris, M. Freeman, M. Maple, C. Nunez, T. Taylor, W. Toczynski, C. Urdiales, H.E. Spence, J.A. Cravens, L.L. Suther, J. Chen, Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev. 179, 423–484 (2013). doi:10.1007/s11214-013-9968-7

    Article  ADS  Google Scholar 

  • C. Gabrielse, V. Angelopoulos, A. Runov, D.L. Turner, Statistical characteristics of particle injections throughout the equatorial magnetotail. J. Geophys. Res. 119, 2512–2535 (2014). doi:10.1002/2013JA019638

    Article  Google Scholar 

  • A.A. Galeev, R.Z. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Physics, ed. by A.M.A. Leontovich Reviews of Plasma Physics, vol. 7 (1979), p. 1

    Google Scholar 

  • N.Y. Ganushkina, O.A. Amariutei, Y.Y. Shprits, M.W. Liemohn, Transport of the plasma sheet electrons to the geostationary distances. J. Geophys. Res. 118, 82–98 (2013). doi:10.1029/2012JA017923

    Article  Google Scholar 

  • N.Y. Ganushkina, M.W. Liemohn, S. Dubyagin, I.A. Daglis, I. Dandouras, D.L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S.E. Milan, S. Ohtani, N. Ostgaard, J.P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, O. Amariutei, Defining and resolving current systems in geospace. Ann. Geophys. 33, 1369–1402 (2015). doi:10.5194/angeo-33-1369-2015

    Article  ADS  Google Scholar 

  • R. Gendrin, Le guidage des whistlers par le champ magnetique. Planet. Space Sci. 5, 274 (1961). doi:10.1016/0032-0633(61)90096-4

    Article  ADS  Google Scholar 

  • V.L. Ginzburg, A.A. Rukhadze, Waves in Magnetoactive Plasma, 2nd revised edition edn. (Nauka, Moscow, 1975)

    Google Scholar 

  • S.A. Glauert, R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, 4206 (2005). doi:10.1029/2004JA010851

    Article  Google Scholar 

  • S.A. Glauert, R.B. Horne, N.P. Meredith, Three-dimensional electron radiation belt simulations using the BAS radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers. J. Geophys. Res. Space Phys. 119, 268–289 (2014). doi:10.1002/2013JA019281

    Article  ADS  Google Scholar 

  • M.V. Goldman, D.F. Dubois, Beam-plasma instability in the presence of low-frequency turbulence. Phys. Fluids 25, 1062–1072 (1982). doi:10.1063/1.863839

    Article  ADS  MATH  Google Scholar 

  • J. Goldstein, Plasmasphere response: tutorial and review of recent imaging results. Space Sci. Rev. 124, 203–216 (2006). doi:10.1007/s11214-006-9105-y

    Article  ADS  Google Scholar 

  • J.L. Green, S. Boardsen, L. Garcia, W.W.L. Taylor, S.F. Fung, B.W. Reinisch, On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110, 3201 (2005). doi:10.1029/2004JA010495

    Article  Google Scholar 

  • D.A. Gurnett, L.A. Reinleitner, Electron acceleration by Landau resonance with whistler mode wave packets. Geophys. Res. Lett. 10, 603–606 (1983). doi:10.1029/GL010i008p00603

    Article  ADS  Google Scholar 

  • T. Hada, A. Nishida, T. Terasawa, E.W. Hones Jr., Bi-directional electron pitch angle anisotropy in the plasma sheet. J. Geophys. Res. 86, 11211–11224 (1981). doi:10.1029/JA086iA13p11211

    Article  ADS  Google Scholar 

  • N. Haque, U.S. Inan, T.F. Bell, J.S. Pickett, J.G. Trotignon, G. Facskó, Cluster observations of whistler mode ducts and banded chorus. Geophys. Res. Lett. 38, 18107 (2011). doi:10.1029/2011GL049112

    Article  ADS  Google Scholar 

  • K. Hashimoto, I. Kimura, H. Kumagai, Estimation of electron temperature by VLF waves propagating in directions near the resonance cone. Planet. Space Sci. 25, 871–877 (1977). doi:10.1016/0032-0633(77)90040-X

    Article  ADS  Google Scholar 

  • M. Hayakawa, Y. Yamanaka, M. Parrot, F. Lefeuvre, The wave normals of magnetospheric chorus emissions observed on board GEOS 2. J. Geophys. Res. 89, 2811–2821 (1984). doi:10.1029/JA089iA05p02811

    Article  ADS  Google Scholar 

  • Y. He, K. Xiao, Q. Zhou, C. Yang, S. Liu, D.N. Baker, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, H.E. Spence, G.D. Reeves, H.O. Funsten, J.B. Blake, Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities. J. Geophys. Res. (2015). doi:10.1002/2015JA021376

    Google Scholar 

  • R.A. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965)

    Google Scholar 

  • R.A. Helliwell, A theory of discrete VLF emissions from the magnetosphere. J. Geophys. Res. 72, 4773–4790 (1967). doi:10.1029/JZ072i019p04773

    Article  ADS  Google Scholar 

  • R.B. Horne, Path-integrated growth of electrostatic waves—the generation of terrestrial myriametric radiation. J. Geophys. Res. 94, 8895–8909 (1989). doi:10.1029/JA094iA07p08895

    Article  ADS  Google Scholar 

  • R.B. Horne, Trapping and acceleration of upflowing ionospheric electrons in the magnetosphere by electrostatic electron cyclotron harmonic waves. Geophys. Res. Lett. 42, 975–980 (2015). doi:10.1002/2014GL062406

    Article  ADS  Google Scholar 

  • R.B. Horne, S.S. Sazhin, Quasielectrostatic and electrostatic approximations for whistler mode waves in the magnetospheric plasma. Planet. Space Sci. 38, 311–318 (1990). doi:10.1016/0032-0633(90)90095-8

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: the origin of pancake distributions. J. Geophys. Res. 105, 5391–5402 (2000). doi:10.1029/1999JA900447

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30(10) (2003). doi:10.1029/2003GL016973

  • R.B. Horne, S.A. Glauert, R.M. Thorne, Resonant diffusion of radiation belt electrons by whistler-mode chorus. Geophys. Res. Lett. 30 (2003a). doi:10.1029/2003GL016963

  • R.B. Horne, R.M. Thorne, N.P. Meredith, R.R. Anderson, Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J. Geophys. Res. 108, 1290 (2003b). doi:10.1029/2002JA009736

    Article  Google Scholar 

  • R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110, 3225 (2005a). doi:10.1029/2004JA010811

    Article  Google Scholar 

  • R.B. Horne, R.M. Thorne, Y.Y. Shprits, N.P. Meredith, S.A. Glauert, A.J. Smith, S.G. Kanekal, D.N. Baker, M.J. Engebretson, J.L. Posch, M. Spasojevic, U.S. Inan, J.S. Pickett, P.M.E. Decreau, Wave acceleration of electrons in the van Allen radiation belts. Nature 437, 227–230 (2005b). doi:10.1038/nature03939

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, S.A. Glauert, N.P. Meredith, D. Pokhotelov, O. Santolík, Electron acceleration in the van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett. 34, 17107 (2007). doi:10.1029/2007GL030267

    Article  ADS  Google Scholar 

  • R.B. Horne, T. Kersten, S.A. Glauert, N.P. Meredith, D. Boscher, A. Sicard-Piet, R.M. Thorne, W. Li, A new diffusion matrix for whistler mode chorus waves. J. Geophys. Res. 118, 6302–6318 (2013a). doi:10.1002/jgra.50594

    Article  Google Scholar 

  • R.B. Horne, S.A. Glauert, N.P. Meredith, D. Boscher, V. Maget, D. Heynderickx, D. Pitchford, Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11, 169–186 (2013b). doi:10.1002/swe.20023

    Article  ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, The plasmapause as a VLF wave guide. J. Geophys. Res. 82, 2819–2827 (1977). doi:10.1029/JA082i019p02819

    Article  ADS  Google Scholar 

  • Y. Isono, A. Mizuno, T. Nagahama, Y. Miyoshi, T. Nakamura, R. Kataoka, M. Tsutsumi, M.K. Ejiri, H. Fujiwara, H. Maezawa, M. Uemura, Ground-based observations of nitric oxide in the mesosphere and lower thermosphere over Antarctica in 2012–2013. J. Geophys. Res. 119, 7745–7761 (2014). doi:10.1002/2014JA019881

    Article  Google Scholar 

  • N. Iucci, A.E. Levitin, A.V. Belov, E.A. Eroshenko, N.G. Ptitsyna, G. Villoresi, G.V. Chizhenkov, L.I. Dorman, L.I. Gromova, M. Parisi, M.I. Tyasto, V.G. Yanke, Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3, 1001 (2005). doi:10.1029/2003SW000056

    Article  ADS  Google Scholar 

  • F. Jirícek, D.R. Shklyar, P. Tríska, LHR effects in nonducted whistler propogation—new observations and numerical modelling. Ann. Geophys. 19, 147–157 (2001). doi:10.5194/angeo-19-147-2001

    Article  ADS  Google Scholar 

  • J.R. Kan, L. Zhu, S.-I. Akasofu, A theory of substorms—onset and subsidence. J. Geophys. Res. 93, 5624–5640 (1988). doi:10.1029/JA093iA06p05624

    Article  ADS  Google Scholar 

  • V.I. Karpman, Nonlinear effects in the ELF waves propagating along the magnetic field in the magnetosphere. Space Sci. Rev. 16, 361–388 (1974). doi:10.1007/BF00171564

    Article  ADS  Google Scholar 

  • V.I. Karpman, D.R. Shkliar, Particle precipitation caused by a single whistler-mode wave injected into the magnetosphere. Planet. Space Sci. 25, 395–403 (1977). doi:10.1016/0032-0633(77)90055-1

    Article  ADS  Google Scholar 

  • V.I. Karpman, D.R. Shklyar, Nonlinear damping of potential monochromatic waves in an inhomogeneous plasma. Sov. Phys. JETP 35, 500 (1972)

    ADS  Google Scholar 

  • V.I. Karpman, D.R. Shklyar, Nonlinear Landau damping in an inhomogeneous plasma. Sov. Phys. JETP 40, 53–56 (1975)

    ADS  Google Scholar 

  • V.I. Karpman, I.N. Istomin, D.R. Shkliar, Effects of nonlinear interaction of monochromatic waves with resonant particles in the inhomogeneous plasma. Phys. Scr. 11, 278–284 (1975). doi:10.1088/0031-8949/11/5/008

    Article  ADS  Google Scholar 

  • V.I. Karpman, J.N. Istomin, D.R. Shklyar, Nonlinear theory of a quasi-monochromatic whistler mode packet in inhomogeneous plasma. Plasma Phys. 16, 685–703 (1974). doi:10.1088/0032-1028/16/8/001

    Article  ADS  Google Scholar 

  • V.I. Karpman, J.N. Istomin, D.R. Shklyar, Particle acceleration by a non-linear langmuir wave in an inhomogeneous plasma. Phys. Lett. A 53, 101–102 (1975). doi:10.1016/0375-9601(75)90364-3

    Article  ADS  Google Scholar 

  • Y. Katoh, A simulation study of the propagation of whistler-mode chorus in the Earth’s inner magnetosphere. Earth Planets Space 66, 6 (2014). doi:10.1186/1880-5981-66-6

    Article  ADS  Google Scholar 

  • Y. Katoh, Y. Omura, Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J. Geophys. Res. 116, 7201 (2011). doi:10.1029/2011JA016496

    Google Scholar 

  • Y. Katoh, Y. Omura, D. Summers, Rapid energization of radiation belt electrons by nonlinear wave trapping. Ann. Geophys. 26, 3451–3456 (2008). doi:10.5194/angeo-26-3451-2008

    Article  ADS  Google Scholar 

  • P.J. Kellogg, C.A. Cattell, K. Goetz, S.J. Monson, L.B. Wilson III, Electron trapping and charge transport by large amplitude whistlers. Geophys. Res. Lett. 37, 20106 (2010). doi:10.1029/2010GL044845

    Article  ADS  Google Scholar 

  • P.J. Kellogg, C.A. Cattell, K. Goetz, S.J. Monson, L.B. Wilson III, Large amplitude whistlers in the magnetosphere observed with Wind-Waves. J. Geophys. Res. 116, 9224 (2011). doi:10.1029/2010JA015919

    Article  Google Scholar 

  • C. Kennel, Low-frequency whistler mode. Phys. Fluids 9, 2190–2202 (1966). doi:10.1063/1.1761588

    Article  ADS  Google Scholar 

  • C.F. Kennel, H.E. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966)

    Article  ADS  Google Scholar 

  • C.F. Kennel, H.V. Wong, Resonant particle instabilities in a uniform magnetic field. J. Plasma Phys. 1, 75 (1967). doi:10.1017/S002237780000310X

    Article  ADS  Google Scholar 

  • K. Kersten, C.A. Cattell, A. Breneman, K. Goetz, P.J. Kellogg, J.R. Wygant, L.B. Wilson III, J.B. Blake, M.D. Looper, I. Roth, Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler-mode waves. Geophys. Res. Lett. 38, 8107 (2011)

    Article  ADS  Google Scholar 

  • K. Kersten, J.R. Wygant, C.A. Cattell, A.W. Breneman, L. Dai, S. Zhang, J.W. Bonnell, J. Tao, I. Roth, C. Kletzing, W.S. Kurth, G.B. Hospodarsky, J.F. Fennell, J.B. Blake, S.G. Claudepierre, H. Spence, Van Allen Probes observations and test particle simulations of radiation belt wave-particle interactions during periods of intense wave activity. AGU Fall Meeting Abstracts (2013)

  • H.-J. Kim, L. Lyons, V. Pinto, C.-P. Wang, K.-C. Kim, Re-visit of relationship between geosynchronous relativistic electron enhancements and magnetic storms. Geophys. Res. Lett. (2015). doi:10.1002/2015GL065192

    Google Scholar 

  • I. Kimura, Effects of ions on whistler-mode ray tracing. Radio Sci. 1(3), 269–283 (1966)

    Article  ADS  Google Scholar 

  • I. Kimura, Whistler mode propagation in the Earth and planetary magnetospheres and ray tracing techniques. Space Sci. Rev. 42, 449–466 (1985). doi:10.1007/BF00214998

    Article  ADS  Google Scholar 

  • C.A. Kletzing, W.S. Kurth, M. Acuna, R.J. MacDowall, R.B. Torbert, T. Averkamp, D. Bodet, S.R. Bounds, M. Chutter, J. Connerney, D. Crawford, J.S. Dolan, R. Dvorsky, G.B. Hospodarsky, J. Howard, V. Jordanova, R.A. Johnson, D.L. Kirchner, B. Mokrzycki, G. Needell, J. Odom, D. Mark, R. Pfaff, J.R. Phillips, C.W. Piker, S.L. Remington, D. Rowland, O. Santolik, R. Schnurr, D. Sheppard, C.W. Smith, R.M. Thorne, J. Tyler, The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev. 179, 127–181 (2013). doi:10.1007/s11214-013-9993-6

    Article  ADS  Google Scholar 

  • D.M. Klumpar, J.M. Quinn, E.G. Shelley, Counter-streaming electrons at the geomagnetic equator near 9 Earth radii. Geophys. Res. Lett. 15, 1295–1298 (1988). doi:10.1029/GL015i011p01295

    Article  ADS  Google Scholar 

  • G.A. Kotova, The Earth’s plasmasphere: state of studies (a review). Geomagn. Aeron. 47, 409–422 (2007). doi:10.1134/S0016793207040019

    Article  ADS  Google Scholar 

  • C. Krafft, A.S. Volokitin, V.V. Krasnoselskikh, Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas. Astrophys. J. 778, 111 (2013). doi:10.1088/0004-637X/778/2/111

    Article  ADS  Google Scholar 

  • P. Kulkarni, M. Gołkowski, U.S. Inan, T.F. Bell, The effect of electron and ion temperature on the refractive index surface of 1–10 kHz whistler mode waves in the inner magnetosphere. J. Geophys. Res. 120, 581–591 (2015). doi:10.1002/2014JA020669

    Article  Google Scholar 

  • I.V. Kuzichev, D.R. Shklyar, Full-wave description of the lower hybrid reflection of whistler waves. Plasma Phys. Rep. 39, 795–808 (2013). doi:10.1134/S1063780X13090043

    Article  ADS  Google Scholar 

  • J. LaBelle, R.A. Treumann, Auroral radio emissions, 1. Hisses, roars, and bursts. Space Sci. Rev. 101, 295–440 (2002)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media. Course of Theoretical Physics, vol. 8 (Pergamon, Elmsford, 1960)

    MATH  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics, vol. 2 (Pergamon, Elmsford, 1971)

    MATH  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Mechanics. Course of Theoretical Physics, vol. 1 (Pergamon, Elmsford, 1988)

    MATH  Google Scholar 

  • D.S. Lauben, U.S. Inan, T.F. Bell, D.A. Gurnett, Source characteristics of ELF/VLF chorus. J. Geophys. Res. 107, 1429 (2002). doi:10.1029/2000JA003019

    Article  Google Scholar 

  • G. Laval, R. Pellat, Particle acceleration by electrostatic waves propagating in an inhomogeneous plasma. J. Geophys. Res. 75, 3255–3256 (1970). doi:10.1029/JA075i016p03255

    Article  ADS  Google Scholar 

  • M.J. LeDocq, D.A. Gurnett, G.B. Hospodarsky, Chorus source locations from VLF Poynting flux measurements with the polar spacecraft. Geophys. Res. Lett. 25, 4063 (1998). doi:10.1029/1998GL900071

    Article  ADS  Google Scholar 

  • J. Li, B. Ni, L. Xie, Z. Pu, J. Bortnik, R.M. Thorne, L. Chen, Q. Ma, S. Fu, Q. Zong, X. Wang, C. Xiao, Z. Yao, R. Guo, Interactions between magnetosonic waves and radiation belt electrons: comparisons of quasi-linear calculations with test particle simulations. Geophys. Res. Lett. 41, 4828–4834 (2014). doi:10.1002/2014GL060461

    Article  ADS  Google Scholar 

  • J. Li, J. Bortnik, L. Xie, Z. Pu, L. Chen, B. Ni, X. Tao, R.M. Thorne, S. Fu, Z. Yao, R. Guo, Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves. Phys. Plasmas 22(5), 052902 (2015). doi:10.1063/1.4914852

    Article  ADS  Google Scholar 

  • W. Li, R.M. Thorne, N.P. Meredith, R.B. Horne, J. Bortnik, Y.Y. Shprits, B. Ni, Evaluation of whistler mode chorus amplification during an injection event observed on CRRES. J. Geophys. Res. 113, 9210 (2008). doi:10.1029/2008JA013129

    Article  Google Scholar 

  • W. Li, R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, W. Magnes, Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys. Res. Lett. 36, 9104 (2009). doi:10.1029/2009GL037595

    Article  ADS  Google Scholar 

  • W. Li, R.M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, L. Chen, J.P. McFadden, J.W. Bonnell, Global distributions of suprathermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015687

  • W. Li, J. Bortnik, R.M. Thorne, V. Angelopoulos, Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. J. Geophys. Res. 116, 12205 (2011). doi:10.1029/2011JA017035

    Google Scholar 

  • W. Li, J. Bortnik, R.M. Thorne, C.M. Cully, L. Chen, V. Angelopoulos, Y. Nishimura, J.B. Tao, J.W. Bonnell, O. Lecontel, Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS. J. Geophys. Res. 118, 1461–1471 (2013). doi:10.1002/jgra.50176

    Article  Google Scholar 

  • W. Li, D. Mourenas, A. Artemyev, O. Agapitov, J. Bortnik, J. Albert, R.M. Thorne, B. Ni, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves. Geophys. Res. Lett. 41, 6063–6070 (2014a). doi:10.1002/2014GL061260

    Article  ADS  Google Scholar 

  • W. Li, R.M. Thorne, Q. Ma, B. Ni, J. Bortnik, D.N. Baker, H.E. Spence, G.D. Reeves, S.G. Kanekal, J.C. Green, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, J.B. Blake, J.F. Fennell, S.G. Claudepierre, Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. J. Geophys. Res. 119, 4681–4693 (2014b). doi:10.1002/2014JA019945

    Article  Google Scholar 

  • W. Li, R.M. Thorne, J. Bortnik, D.N. Baker, G.D. Reeves, S.G. Kanekal, H.E. Spence, J.C. Green, Solar wind conditions leading to efficient radiation belt electron acceleration: a superposed epoch analysis. Geophys. Res. Lett. 42, 6906–6915 (2015a). doi:10.1002/2015GL065342

    Article  ADS  Google Scholar 

  • W. Li, Q. Ma, R.M. Thorne, J. Bortnik, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, Y. Nishimura, Statistical properties of plasmaspheric hiss derived from van Allen Probes data and their effects on radiation belt electron dynamics. J. Geophys. Res. 120, 3393–3405 (2015b). doi:10.1002/2015JA021048

    Article  Google Scholar 

  • R.P. Lin, W.K. Levedahl, W. Lotko, D.A. Gurnett, F.L. Scarf, Evidence for nonlinear wave-wave interactions in solar type III radio bursts. Astrophys. J. 308, 954–965 (1986). doi:10.1086/164563

    Article  ADS  Google Scholar 

  • L.R. Lyons, Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J. Plasma Phys. 12, 417–432 (1974). doi:10.1017/S002237780002537X

    Article  ADS  Google Scholar 

  • L.R. Lyons, R.M. Thorne, Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78, 2142–2149 (1973). doi:10.1029/JA078i013p02142

    Article  ADS  Google Scholar 

  • L.R. Lyons, D.J. Williams, Quantitative Aspects of Magnetospheric Physics (1984)

    Book  Google Scholar 

  • L.R. Lyons, R.M. Thorne, C.F. Kennel, Electron pitch-angle diffusion driven by oblique whistler-mode turbulence. J. Plasma Phys. 6, 589–606 (1971). doi:10.1017/S0022377800006310

    Article  ADS  Google Scholar 

  • L.R. Lyons, R.M. Thorne, C.F. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972). doi:10.1029/JA077i019p03455

    Article  ADS  Google Scholar 

  • Q. Ma, W. Li, R.M. Thorne, J. Bortnik, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, Electron scattering by magnetosonic waves in the inner magnetosphere. J. Geophys. Res. 121, 274–285 (2016). doi:10.1002/2015JA021992

    Article  Google Scholar 

  • J.E. Maggs, Coherent generation of VLF hiss. J. Geophys. Res. 81, 1707–1724 (1976). doi:10.1029/JA081i010p01707

    Article  ADS  Google Scholar 

  • D.M. Malaspina, J.R. Wygant, R.E. Ergun, G.D. Reeves, R.M. Skoug, B.A. Larsen, Electric field structures and waves at plasma boundaries in the inner magnetosphere. J. Geophys. Res. 120 (2015). doi:10.1002/2015JA021137

  • B.H. Mauk, N.J. Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179, 3–27 (2013). doi:10.1007/s11214-012-9908-y

    Article  ADS  Google Scholar 

  • R.L. McPherron, The role of substorms in the generation of magnetic storms, in Washington DC American Geophysical Union Geophysical Monograph Series, vol. 98 (1997), pp. 131–147. doi:10.1029/GM098p0131

    Google Scholar 

  • N.P. Meredith, R.B. Horne, R.R. Anderson, Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J. Geophys. Res. 106, 13165–13178 (2001). doi:10.1029/2000JA900156

    Article  ADS  Google Scholar 

  • N.P. Meredith, A.D. Johnstone, S. Szita, R.B. Horne, R.R. Anderson, “Pancake” electron distributions in the outer radiation belts. J. Geophys. Res. 104, 12431–12444 (1999). doi:10.1029/1998JA900083

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys. Res. Lett. 30(16) (2003). doi:10.1029/2003GL017698

  • N.P. Meredith, R.B. Horne, S.A. Glauert, R.R. Anderson, Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J. Geophys. Res. 112, 8214 (2007). doi:10.1029/2007JA012413

    Article  Google Scholar 

  • N.P. Meredith, R.B. Horne, A. Sicard-Piet, D. Boscher, K.H. Yearby, W. Li, R.M. Thorne, Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res. 117, 10225 (2012). doi:10.1029/2012JA017978

    Article  Google Scholar 

  • N.P. Meredith, R.B. Horne, J. Bortnik, R.M. Thorne, L. Chen, W. Li, A. Sicard-Piet, Global statistical evidence for chorus as the embryonic source of plasmaspheric hiss. Geophys. Res. Lett. 40, 2891–2896 (2013). doi:10.1002/grl.50593

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, T. Kersten, B.J. Fraser, R.S. Grew, Global morphology and spectral properties of EMIC waves derived from CRRES observations. J. Geophys. Res. 119, 5328–5342 (2014). doi:10.1002/2014JA020064

    Article  Google Scholar 

  • K. Min, K. Liu, W. Li, Signatures of electron Landau resonant interactions with chorus waves from THEMIS observations. J. Geophys. Res. 119, 5551–5560 (2014). doi:10.1002/2014JA019903

    Article  Google Scholar 

  • D. Mourenas, J.-F. Ripoll, Analytical estimates of quasi-linear diffusion coefficients and electron lifetimes in the inner radiation belt. J. Geophys. Res. 117, 01204 (2012). doi:10.1029/2011JA016985

    Google Scholar 

  • D. Mourenas, A. Artemyev, O. Agapitov, V. Krasnoselskikh, Acceleration of radiation belts electrons by oblique chorus waves. J. Geophys. Res. 117, 10212 (2012a). doi:10.1029/2012JA018041

    Google Scholar 

  • D. Mourenas, A.V. Artemyev, J.-F. Ripoll, O.V. Agapitov, V.V. Krasnoselskikh, Timescales for electron quasi-linear diffusion by parallel and oblique lower-band Chorus waves. J. Geophys. Res. 117, 06234 (2012b). doi:10.1029/2012JA017717

    Google Scholar 

  • D. Mourenas, A.V. Artemyev, O.V. Agapitov, V. Krasnoselskikh, Analytical estimates of electron quasi-linear diffusion by fast magnetosonic waves. J. Geophys. Res. 118, 3096–3112 (2013). doi:10.1002/jgra.50349

    Article  Google Scholar 

  • D. Mourenas, A.V. Artemyev, O.V. Agapitov, V. Krasnoselskikh, W. Li, Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler mode waves. J. Geophys. Res. 119, 9962–9977 (2014a). doi:10.1002/2014JA020443

    Article  Google Scholar 

  • D. Mourenas, A.V. Artemyev, O.V. Agapitov, V. Krasnoselskikh, Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves. J. Geophys. Res. 119, 2775–2796 (2014b). doi:10.1002/2013JA019674

    Article  Google Scholar 

  • D. Mourenas, A.V. Artemyev, O.V. Agapitov, V. Krasnoselskikh, F.S. Mozer, Very oblique whistler generation by low-energy electron streams. J. Geophys. Res. 120, 3665–3683 (2015). doi:10.1002/2015JA021135

    Article  Google Scholar 

  • F.S. Mozer, S.D. Bale, J.W. Bonnell, C.C. Chaston, I. Roth, J. Wygant, Megavolt parallel potentials arising from double-layer streams in the Earth’s outer radiation belt. Phys. Rev. Lett. 111(23), 235002 (2013). doi:10.1103/PhysRevLett.111.235002

    Article  ADS  Google Scholar 

  • F.S. Mozer, O. Agapitov, V. Krasnoselskikh, S. Lejosne, G.D. Reeves, I. Roth, Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers. Phys. Rev. Lett. 113(3), 035001 (2014). doi:10.1103/PhysRevLett.113.035001

    Article  ADS  Google Scholar 

  • F.S. Mozer, O. Agapitov, A. Artemyev, J.F. Drake, V. Krasnoselskikh, S. Lejosne, I. Vasko, Time domain structures: what and where they are, what they do, and how they are made. Geophys. Res. Lett. 42, 3627–3638 (2015). doi:10.1002/2015GL063946

    Article  ADS  Google Scholar 

  • F.S. Mozer, A. Artemyev, O.V. Agapitov, D. Mourenas, I. Vasko, Near-relativistic electron acceleration by Landau trapping in time domain structures. Geophys. Res. Lett. 43, 508–514 (2016). doi:10.1002/2015GL067316

    Article  ADS  Google Scholar 

  • A.I. Neishtadt, Hamiltonian systems with three or more degrees of freedom, in NATO ASI Series C, vol. 533, (Kluwer Academic, Dordrecht, 1999), pp. 193–213. doi:10.1063/1.166236

    Google Scholar 

  • A.I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two-frequency systems. Russ. Math. Surv. 69(5), 771 (2014). http://stacks.iop.org/0036-0279/69/i=5/a=771

    Article  MathSciNet  MATH  Google Scholar 

  • A.I. Neishtadt, A.A. Vasiliev, Destruction of adiabatic invariance at resonances in slow fast Hamiltonian systems. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 561, 158–165 (2006). doi:10.1016/j.nima.2006.01.008

    Article  ADS  Google Scholar 

  • D.A. Newnham, P.J. Espy, M.A. Clilverd, C.J. Rodger, A. Seppälä, D.J. Maxfield, P. Hartogh, K. Holmén, R.B. Horne, Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere. Geophys. Res. Lett. 38, 20104 (2011). doi:10.1029/2011GL048666

    Article  ADS  Google Scholar 

  • D.A. Newnham, P.J. Espy, M.A. Clilverd, C.J. Rodger, A. Seppälä, D.J. Maxfield, P. Hartogh, C. Straub, K. Holmén, R.B. Horne, Observations of nitric oxide in the Antarctic middle atmosphere during recurrent geomagnetic storms. J. Geophys. Res. 118, 7874–7885 (2013). doi:10.1002/2013JA019056

    Article  Google Scholar 

  • B. Ni, R.M. Thorne, Y.Y. Shprits, K.G. Orlova, N.P. Meredith, Chorus-driven resonant scattering of diffuse auroral electrons in nondipolar magnetic fields. J. Geophys. Res. 116, 6225 (2011a). doi:10.1029/2011JA016453

    Google Scholar 

  • B. Ni, R.M. Thorne, N.P. Meredith, Y.Y. Shprits, R.B. Horne, Diffuse auroral scattering by whistler mode chorus waves: dependence on wave normal angle distribution. J. Geophys. Res. 116, 10207 (2011b). doi:10.1029/2011JA016517

    Google Scholar 

  • B. Ni, R.M. Thorne, R.B. Horne, N.P. Meredith, Y.Y. Shprits, L. Chen, W. Li, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. J. Geophys. Res. 116, 4218 (2011c). doi:10.1029/2010JA016232

    Google Scholar 

  • B. Ni, R.M. Thorne, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res. 116, 4219 (2011d). doi:10.1029/2010JA016233

    Google Scholar 

  • B. Ni, J. Liang, R.M. Thorne, V. Angelopoulos, R.B. Horne, M. Kubyshkina, E. Spanswick, E.F. Donovan, D. Lummerzheim, Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: a detailed case study. J. Geophys. Res. 117, 1218 (2012). doi:10.1029/2011JA017095

    Article  Google Scholar 

  • B. Ni, J. Bortnik, R.M. Thorne, Q. Ma, L. Chen, Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. J. Geophys. Res. 118, 7740–7751 (2013). doi:10.1002/2013JA019260

    Article  Google Scholar 

  • B. Ni, R.M. Thorne, X. Zhang, J. Bortnik, Z. Pu, L. Xie, Z.-j. Hu, D. Han, R. Shi, C. Zhou, X. Gu, Origins of the Earth’s diffuse auroral precipitation. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0234-7

    Google Scholar 

  • Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, L.R. Lyons, V. Angelopoulos, S.B. Mende, J.W. Bonnell, O. Le Contel, C. Cully, R. Ergun, U. Auster, Identifying the driver of pulsating aurora. Science 330, 81 (2010). doi:10.1126/science.1193186

    Article  ADS  Google Scholar 

  • D. Nunn, Wave-particle interactions in electrostatic waves in an inhomogeneous medium. J. Plasma Phys. 6, 291 (1971). doi:10.1017/S0022377800006061

    Article  ADS  Google Scholar 

  • D. Nunn, A self-consistent theory of triggered VLF emissions. Planet. Space Sci. 22, 349–378 (1974). doi:10.1016/0032-0633(74)90070-1

    Article  ADS  Google Scholar 

  • D. Nunn, A nonlinear theory of sideband stability in ducted whistler mode waves. Planet. Space Sci. 34, 429–451 (1986). doi:10.1016/0032-0633(86)90032-2

    Article  ADS  Google Scholar 

  • D. Nunn, Y. Omura, A computational and theoretical analysis of falling frequency VLF emissions. J. Geophys. Res. 117, 8228 (2012). doi:10.1029/2012JA017557

    Article  Google Scholar 

  • D. Nunn, Y. Omura, A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers. J. Geophys. Res. 120, 2890–2911 (2015). doi:10.1002/2014JA020898

    Article  Google Scholar 

  • D. Nunn, O. Santolik, M. Rycroft, V. Trakhtengerts, On the numerical modelling of VLF chorus dynamical spectra. Ann. Geophys. 27, 2341–2359 (2009). doi:10.5194/angeo-27-2341-2009

    Article  ADS  Google Scholar 

  • T.P. O’Brien, M.B. Moldwin, Empirical plasmapause models from magnetic indices. Geophys. Res. Lett. 30, 1152 (2003). doi:10.1029/2002GL016007

    ADS  Google Scholar 

  • Y. Omura, N. Furuya, D. Summers, Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J. Geophys. Res. 112, 6236 (2007). doi:10.1029/2006JA012243

    Article  Google Scholar 

  • Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, 4223 (2008). doi:10.1029/2007JA012622

    Article  Google Scholar 

  • Y. Omura, D. Nunn, D. Summers, Generation processes of whistler mode chorus emissions: current status of nonlinear wave growth theory, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by D. Summers, I.U. Mann, D.N. Baker, M. Schulz American Geophysical Union (2013), pp. 243–254. doi:10.1029/2012GM001347

    Chapter  Google Scholar 

  • Y. Omura, H. Matsumoto, D. Nunn, M.J. Rycroft, A review of observational, theoretical and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53, 351–368 (1991)

    Article  ADS  Google Scholar 

  • Y. Omura, M. Hikishima, Y. Katoh, D. Summers, S. Yagitani, Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere. J. Geophys. Res. 114, 7217 (2009). doi:10.1029/2009JA014206

    Article  Google Scholar 

  • Y. Omura, Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, Y. Kubota, Formation process of relativistic electron flux through interaction with chorus emissions in the Earth’s inner magnetosphere. J. Geophys. Res. 120, 9545–9562 (2015). doi:10.1002/2015JA021563

    Article  Google Scholar 

  • K. Orlova, Y. Shprits, Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using realistic chorus wave parameters. J. Geophys. Res. 119, 770–780 (2014). doi:10.1002/2013JA019596

    Article  Google Scholar 

  • K.G. Orlova, Y.Y. Shprits, Dependence of pitch-angle scattering rates and loss timescales on the magnetic field model. Geophys. Res. Lett. 37, 5105 (2010). doi:10.1029/2009GL041639

    Article  ADS  Google Scholar 

  • A. Osmane, A.M. Hamza, Relativistic surfatron process for Landau resonant electrons in radiation belts. Nonlinear Process. Geophys. 21, 115–125 (2014). doi:10.5194/npg-21-115-2014

    Article  ADS  Google Scholar 

  • A. Osmane, L.B. Wilson III, L. Blum, T.I. Pulkkinen, On the connection between microbursts and nonlinear electronic structures in planetary radiation belts. Astrophys. J. 816, 51 (2016). doi:10.3847/0004-637X/816/2/51

    Article  ADS  Google Scholar 

  • P. Ozhogin, J. Tu, P. Song, B.W. Reinisch, Field-aligned distribution of the plasmaspheric electron density: an empirical model derived from the IMAGE RPI measurements. J. Geophys. Res. 117, 6225 (2012). doi:10.1029/2011JA017330

    Article  Google Scholar 

  • E.V. Panov, A.V. Artemyev, W. Baumjohann, R. Nakamura, V. Angelopoulos, Transient electron precipitation during oscillatory BBF braking: THEMIS observations and theoretical estimates. J. Geophys. Res. 118, 3065–3076 (2013). doi:10.1002/jgra.50203

    Article  Google Scholar 

  • G.K. Parks, C.S. Lin, B. Mauk, S. Deforest, C.E. McIlwain, Characteristics of magnetospheric particle injection deduced from events observed on August 18, 1974. J. Geophys. Res. 82, 5208–5214 (1977). doi:10.1029/JA082i032p05208

    Article  ADS  Google Scholar 

  • M. Parrot, O. Santolík, N. Cornilleau-Wehrlin, M. Maksimovic, C. Harvey, Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data. Ann. Geophys. 21, 1111–1120 (2003a). doi:10.5194/angeo-21-1111-2003

    Article  ADS  Google Scholar 

  • M. Parrot, O. Santolýk, N. Cornilleau-Wehrlin, M. Maksimovic, C.C. Harvey, Source location of chorus emissions observed by Cluster. Ann. Geophys. 21, 473–480 (2003b). doi:10.5194/angeo-21-473-2003

    Article  ADS  Google Scholar 

  • G.D. Reeves, K.L. McAdams, R.H.W. Friedel, T.P. O’Brien, Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, 1529 (2003). doi:10.1029/2002GL016513

    Article  ADS  Google Scholar 

  • G.D. Reeves, H.E. Spence, M.G. Henderson, S.K. Morley, R.H.W. Friedel, H.O. Funsten, D.N. Baker, S.G. Kanekal, J.B. Blake, J.F. Fennell, S.G. Claudepierre, R.M. Thorne, D.L. Turner, C.A. Kletzing, W.S. Kurth, B.L. Larsen, J.T. Niehof, Electron acceleration in the heart of the van Allen radiation belts. Science 341, 991–994 (2013). doi:10.1126/science.1237743

    Article  ADS  Google Scholar 

  • L.A. Reinleitner, D.A. Gurnett, T.E. Eastman, Electrostatic bursts generated by electrons in Landau resonance with whistler mode chorus. J. Geophys. Res. 88, 3079–3093 (1983). doi:10.1029/JA088iA04p03079

    Article  ADS  Google Scholar 

  • I. Roth, M. Temerin, M.K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods. Ann. Geophys. 17, 631–638 (1999). doi:10.1007/s00585-999-0631-2

    Article  ADS  Google Scholar 

  • R.Z. Sagdeev, V.D. Shafranov, On the instability of a plasma with an anisotropic distribution of velocities in a magnetic field. Sov. Phys. JETP 12(1), 130–132 (1961). doi:10.5194/angeo-26-3525-2008

    MathSciNet  Google Scholar 

  • O. Santolík, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Central position of the source region of storm-time chorus. Planet. Space Sci. 53, 299–305 (2005). doi:10.1016/j.pss.2004.09.056

    Article  ADS  Google Scholar 

  • O. Santolík, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114 (2009). doi:10.1029/2009JA014586

  • O. Santolík, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, S.R. Bounds, Fine structure of large-amplitude chorus wave packets. Geophys. Res. Lett. 41, 293–299 (2014a). doi:10.1002/2013GL058889

    Article  ADS  Google Scholar 

  • O. Santolík, E. Macúšová, I. Kolmašová, N. Cornilleau-Wehrlin, Y. Conchy, Propagation of lower-band whistler-mode waves in the outer van Allen belt: systematic analysis of 11 years of multi-component data from the Cluster spacecraft. Geophys. Res. Lett. 41, 2729–2737 (2014b). doi:10.1002/2014GL059815

    Article  ADS  Google Scholar 

  • K. Sauer, R.D. Sydora, Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations. Ann. Geophys. 28, 1317–1325 (2010). doi:10.5194/angeo-28-1317-2010

    Article  ADS  Google Scholar 

  • M. Schulz, L.J. Lanzerotti, Particle Diffusion in the Radiation Belts (Springer, New York, 1974)

    Book  Google Scholar 

  • R.S. Selesnick, J.B. Blake, On the source location of radiation belt relativistic electrons. J. Geophys. Res. 105, 2607–2624 (2000). doi:10.1029/1999JA900445

    Article  ADS  Google Scholar 

  • V.A. Sergeev, W. Baumjohann, K. Shiokawa, Bi-directional electron distributions associated with near-tail flux transport. Geophys. Res. Lett. 28, 3813–3816 (2001). doi:10.1029/2001GL013334

    Article  ADS  Google Scholar 

  • V.D. Shapiro, R.Z. Sagdeev, Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Rep. 283, 49–71 (1997). doi:10.1016/S0370-1573(96)00053-1

    Article  ADS  Google Scholar 

  • S.D. Shawhan, D.A. Gurnett, D.L. Odem, R.A. Helliwell, C.G. Park, The plasma wave and quasi-static electric field instrument /PWI/ for dynamics explorer-A. Space Sci. Instrum. 5, 535–550 (1981)

    ADS  Google Scholar 

  • B.W. Sheeley, M.B. Moldwin, H.K. Rassoul, R.R. Anderson, An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res. 106, 25631–25642 (2001). doi:10.1029/2000JA000286

    Article  ADS  Google Scholar 

  • K. Shiokawa, W. Baumjohann, G. Paschmann, Bi-directional electrons in the near-Earth plasma sheet. Ann. Geophys. 21, 1497–1507 (2003). doi:10.5194/angeo-21-1497-2003

    Article  ADS  Google Scholar 

  • D. Shklyar, H. Matsumoto, Oblique whistler-mode waves in the inhomogeneous magnetospheric plasma: resonant interactions with energetic charged particles. Surv. Geophys. 30, 55–104 (2009). doi:10.1007/s10712-009-9061-7

    Article  ADS  Google Scholar 

  • D. Shklyar, J. Chum, F. Jirícek, Characteristic properties of Nu whistlers as inferred from observations and numerical modelling. Ann. Geophys. 22, 3589–3606 (2004). doi:10.5194/angeo-22-3589-2004

    Article  ADS  Google Scholar 

  • D.R. Shklyar, Stochastic motion of relativistic particles in the field of a monochromatic wave. Sov. Phys. JETP 53 (1981)

  • D.R. Shklyar, Nonlinear interaction between a resonance-mode (\(\mathrm{k}_{\parallel}=0\)) wave and energetic plasma particles. J. Plasma Phys. 75, 319–335 (2009). doi:10.1017/S0022377808007496

    Article  ADS  Google Scholar 

  • D.R. Shklyar, On the nature of particle energization via resonant wave-particle interaction in the inhomogeneous magnetospheric plasma. Ann. Geophys. 29, 1179–1188 (2011). doi:10.5194/angeo-29-1179-2011

    Article  ADS  Google Scholar 

  • D.R. Shklyar, F. Jiříček, Simulation of nonducted whistler spectrograms observed aboard the MAGION 4 and 5 satellites. J. Atmos. Sol.-Terr. Phys. 62, 347–370 (2000). doi:10.1016/S1364-6826(99)00097-8

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, B. Ni, Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res. 114, 11205 (2009). doi:10.1029/2009JA014223

    Google Scholar 

  • Y.Y. Shprits, N.P. Meredith, R.M. Thorne, Parameterization of radiation belt electron loss timescales due to interactions with chorus waves. Geophys. Res. Lett. 34, 11110 (2007). doi:10.1029/2006GL029050

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, A. Runov, B. Ni, Gyro-resonant scattering of radiation belt electrons during the solar minimum by fast magnetosonic waves. J. Geophys. Res. 118, 648–652 (2013). doi:10.1002/jgra.50108

    Article  Google Scholar 

  • Y.Y. Shprits, S.R. Elkington, N.P. Meredith, D.A. Subbotin, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J. Atmos. Sol.-Terr. Phys. 70, 1679–1693 (2008a). doi:10.1016/j.jastp.2008.06.008

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, D.A. Subbotin, N.P. Meredith, S.R. Elkington, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J. Atmos. Sol.-Terr. Phys. 70, 1694–1713 (2008b). doi:10.1016/j.jastp.2008.06.014

    Article  ADS  Google Scholar 

  • A. Sicard-Piet, D. Boscher, R.B. Horne, N.P. Meredith, V. Maget, Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis. Ann. Geophys. 32, 1059–1071 (2014). doi:10.5194/angeo-32-1059-2014

    Article  ADS  Google Scholar 

  • R.L. Smith, Electron densities in the outer ionosphere deduced from nose whistlers. J. Geophys. Res. 66, 2578–2579 (1961). doi:10.1029/JZ066i008p02578

    Article  ADS  Google Scholar 

  • V.V. Solovev, D.R. Shkliar, Particle heating by a low-amplitude wave in an inhomogeneous magnetoplasma. Sov. Phys. JETP 63, 272–277 (1986)

    Google Scholar 

  • A.R. Soto-Chavez, G. Wang, A. Bhattacharjee, G.Y. Fu, H.M. Smith, A model for falling-tone chorus. Geophys. Res. Lett. 41, 1838–1845 (2014). doi:10.1002/2014GL059320

    Article  ADS  Google Scholar 

  • M. Spasojevic, Y.Y. Shprits, Chorus functional dependencies derived from CRRES data. Geophys. Res. Lett. 40, 3793–3797 (2013). doi:10.1002/grl.50755

    Article  ADS  Google Scholar 

  • T.H. Stix, The Theory of Plasma Waves (1962)

    MATH  Google Scholar 

  • L.R.O. Storey, F. Lefeuvre, Theory for the interpretation of measurements of the six components of a random electromagnetic wave field in space, in Space Research XIV, ed. by M.J. Rycroft, R.D. Reasenberg (1974), pp. 381–386

    Google Scholar 

  • A.V. Streltsov, J. Woodroffe, W. Gekelman, P. Pribyl, Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities. Phys. Plasmas 19(5), 052104 (2012). doi:10.1063/1.4719710

    Article  ADS  Google Scholar 

  • R.N. Sudan, Plasma electromagnetic instabilities. Phys. Fluids 6, 57–61 (1963). doi:10.1063/1.1724508

    Article  ADS  MATH  Google Scholar 

  • D. Summers, Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J. Geophys. Res. 110, 8213 (2005). doi:10.1029/2005JA011159

    Article  Google Scholar 

  • D. Summers, B. Ni, Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons. Earth Planets Space 60, 763–771 (2008)

    Article  ADS  Google Scholar 

  • D. Summers, Y. Omura, Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys. Res. Lett. 34, 24205 (2007). doi:10.1029/2007GL032226

    Article  ADS  Google Scholar 

  • D. Summers, R.M. Thorne, Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108, 1143 (2003). doi:10.1029/2002JA009489

    Article  Google Scholar 

  • D. Summers, B. Ni, N.P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res. 112, 4206 (2007). doi:10.1029/2006JA011801

    Article  Google Scholar 

  • D. Summers, R. Tang, R.M. Thorne, Limit on stably trapped particle fluxes in planetary magnetospheres. J. Geophys. Res. 114, 10210 (2009). doi:10.1029/2009JA014428

    Article  Google Scholar 

  • D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103, 20487–20500 (1998). doi:10.1029/98JA01740

    Article  ADS  Google Scholar 

  • D. Summers, C. Ma, N.P. Meredith, R.B. Horne, R.M. Thorne, D. Heynderickx, R.R. Anderson, Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys. Res. Lett. 29(24) (2002). doi:10.1029/2002GL016039

  • D. Summers, Y. Omura, Y. Miyashita, D.-H. Lee, Nonlinear spatiotemporal evolution of whistler mode chorus waves in Earth’s inner magnetosphere. J. Geophys. Res. 117, 9206 (2012). doi:10.1029/2012JA017842

    Article  Google Scholar 

  • D. Summers, R. Tang, Y. Omura, D.-H. Lee, Parameter spaces for linear and nonlinear whistler-mode waves. Phys. Plasmas 20(7), 072110 (2013). doi:10.1063/1.4816022

    Article  ADS  Google Scholar 

  • D.W. Swift, Particle acceleration by electrostatic waves. J. Geophys. Res. 75, 6324–6328 (1970). doi:10.1029/JA075i031p06324

    Article  ADS  Google Scholar 

  • X. Tao, J. Bortnik, Nonlinear interactions between relativistic radiation belt electrons and oblique whistler mode waves. Nonlinear Process. Geophys. 17, 599–604 (2010). doi:10.5194/npg-17-599-2010

    Article  ADS  Google Scholar 

  • X. Tao, J. Bortnik, J.M. Albert, K. Liu, R.M. Thorne, Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. Geophys. Res. Lett. 38, 6105 (2011). doi:10.1029/2011GL046787

    Article  ADS  Google Scholar 

  • X. Tao, J. Bortnik, J.M. Albert, R.M. Thorne, Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. J. Geophys. Res. 117, 10205 (2012a). doi:10.1029/2012JA017931

    Google Scholar 

  • X. Tao, J. Bortnik, R.M. Thorne, J.M. Albert, W. Li, Effects of amplitude modulation on nonlinear interactions between electrons and chorus waves. Geophys. Res. Lett. 39, 6102 (2012b). doi:10.1029/2012GL051202

    ADS  Google Scholar 

  • U. Taubenschuss, Y.V. Khotyaintsev, O. Santolík, A. Vaivads, C.M. Cully, O.L. Contel, V. Angelopoulos, Wave normal angles of whistler mode chorus rising and falling tones. J. Geophys. Res. 119, 9567–9578 (2014). doi:10.1002/2014JA020575

    Article  Google Scholar 

  • E.M. Tejero, C. Crabtree, D.D. Blackwell, W.E. Amatucci, M. Mithaiwala, G. Ganguli, L. Rudakov, Laboratory studies of nonlinear whistler wave processes in the van Allen radiation belts. Phys. Plasmas 22(9), 091503 (2015). doi:10.1063/1.4928944

    Article  ADS  Google Scholar 

  • R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 372, 22107 (2010). doi:10.1029/2010GL044990

    ADS  Google Scholar 

  • R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110, 9202 (2005). doi:10.1029/2004JA010882

    Article  Google Scholar 

  • R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943–946 (2010). doi:10.1038/nature09467

    Article  ADS  Google Scholar 

  • R.M. Thorne, W. Li, B. Ni, Q. Ma, J. Bortnik, L. Chen, D.N. Baker, H.E. Spence, G.D. Reeves, M.G. Henderson, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, J.B. Blake, J.F. Fennell, S.G. Claudepierre, S.G. Kanekal, Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414 (2013). doi:10.1038/nature12889

    Article  ADS  Google Scholar 

  • E.E. Titova, B.V. Kozelov, F. Jiricek, J. Smilauer, A.G. Demekhov, V.Y. Trakhtengerts, Verification of the backward wave oscillator model of VLF chorus generation using data from MAGION 5 satellite. Ann. Geophys. 21, 1073–1081 (2003). doi:10.5194/angeo-21-1073-2003

    Article  ADS  Google Scholar 

  • E.E. Titova, B.V. Kozelov, A.G. Demekhov, J. Manninen, O. Santolik, C.A. Kletzing, G. Reeves, Identification of the source of quasi-periodic VLF emissions using ground-based and van Allen Probes satellite observations. Geophys. Res. Lett. (2015). doi:10.1002/2015GL064911

    Google Scholar 

  • E.R. Tracy, A.J. Brizard, A.S. Richardson, A.N. Kaufman, Ray Tracing and Beyond: Phase Space Methods in Plasma Wave Theory (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  • V.Y. Trakhtengerts, Stationary states of the Earth’s outer radiation zone. Geomagn. Aeron. 6, 827–836 (1966)

    Google Scholar 

  • V.Y. Trakhtengerts, Magnetosphere cyclotron maser: backward wave oscillator generation regime. J. Geophys. Res. 100, 17205–17210 (1995). doi:10.1029/95JA00843

    Article  ADS  Google Scholar 

  • V.Y. Trakhtengerts, A generation mechanism for chorus emission. Ann. Geophys. 17, 95–100 (1999). doi:10.1007/s00585-999-0095-4

    Article  ADS  Google Scholar 

  • V.Y. Trakhtengerts, M.J. Rycroft, Whistler and Alfvén Mode Cyclotron Masers in Space (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  • V.Y. Trakhtengerts, A.G. Demekhov, E.E. Titova, B.V. Kozelov, O. Santolik, D. Gurnett, M. Parrot, Interpretation of Cluster data on chorus emissions using the backward wave oscillator model. Phys. Plasmas 11, 1345–1351 (2004). doi:10.1063/1.1667495

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, Postmidnight chorus: a substorm phenomenon. J. Geophys. Res. 79, 118–127 (1974). doi:10.1029/JA079i001p00118

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, M. Grande, Y. Kamide, Y. Kasahara, G. Lu, I. Mann, R. McPherron, F. Soraas, V. Vasyliunas, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111 (2006). doi:10.1029/2005JA011273

  • B.T. Tsurutani, B.J. Falkowski, O.P. Verkhoglyadova, J.S. Pickett, O. Santolík, G.S. Lakhina, Quasi-coherent chorus properties: 1. Implications for wave-particle interactions. J. Geophys. Res. 116, 9210 (2011). doi:10.1029/2010JA016237

    Google Scholar 

  • J. Tu, P. Song, B.W. Reinisch, J.L. Green, X. Huang, Empirical specification of field-aligned plasma density profiles for plasmasphere refilling. J. Geophys. Res. 111, 6216 (2006). doi:10.1029/2005JA011582

    Article  Google Scholar 

  • D.L. Turner, V. Angelopoulos, W. Li, M.D. Hartinger, M. Usanova, I.R. Mann, J. Bortnik, Y. Shprits, On the storm-time evolution of relativistic electron phase space density in Earth’s outer radiation belt. J. Geophys. Res. 118, 2196–2212 (2013). doi:10.1002/jgra.50151

    Article  Google Scholar 

  • D.L. Turner, T.P. O’Brien, J.F. Fennell, S.G. Claudepierre, J.B. Blake, E. Kilpua, H. Hietala, The effects of geomagnetic storms on electrons in Earth’s radiation belts. Geophys. Res. Lett. (2015). doi:10.1002/2015GL064747

    Google Scholar 

  • A.Y. Ukhorskiy, M.I. Sitnov, Dynamics of radiation belt particles. Space Sci. Rev. 179, 545–578 (2013). doi:10.1007/s11214-012-9938-5

    Article  ADS  Google Scholar 

  • B. Van Compernolle, X. An, J. Bortnik, R.M. Thorne, P. Pribyl, W. Gekelman, Excitation of chirping whistler waves in a laboratory plasma. Phys. Rev. Lett. 114(24), 245002 (2015). doi:10.1103/PhysRevLett.114.245002

    Article  ADS  Google Scholar 

  • I.Y. Vasko, O.V. Agapitov, F. Mozer, A.V. Artemyev, D. Jovanovic, Magnetic field depression within electron holes. Geophys. Res. Lett. 42, 2123–2129 (2015). doi:10.1002/2015GL063370

    Article  ADS  Google Scholar 

  • A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Quasilinear theory of plasma oscillations. Nuclear Fusion Suppl. 2, 465–475 (1962)

    MATH  Google Scholar 

  • O.P. Verkhoglyadova, B.T. Tsurutani, Polarization properties of Gendrin mode waves observed in the Earth’s magnetosphere: observations and theory. Ann. Geophys. 27, 4429–4433 (2009). doi:10.5194/angeo-27-4429-2009

    Article  ADS  Google Scholar 

  • A. Voshchepynets, V. Krasnoselskikh, A. Artemyev, A. Volokitin, Probabilistic model of beam–plasma interaction in randomly inhomogeneous plasma. Astrophys. J. 807(1), 38 (2015). http://stacks.iop.org/0004-637X/807/i=1/a=38

    Article  ADS  Google Scholar 

  • S.N. Walker, M.A. Balikhin, P. Canu, N. Cornilleau-Wehrlin, I. Moiseenko, Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves. J. Geophys. Res. 120, 8774–8781 (2015). doi:10.1002/2015JA021718

    Article  Google Scholar 

  • K. Wang, C.-H. Lin, L.-Y. Wang, T. Hada, Y. Nishimura, D.L. Turner, V. Angelopoulos, Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations. J. Geophys. Res. 119, 9747–9760 (2014). doi:10.1002/2014JA020176

    Article  Google Scholar 

  • C.E.J. Watt, R. Rankin, Alfvén wave acceleration of auroral electrons in warm magnetospheric plasma. Washington DC American Geophysical Union Geophysical Monograph Series 197, 251–260 (2012). doi:10.1029/2011GM001171

    ADS  Google Scholar 

  • C.E.J. Watt, A.W. Degeling, R. Rankin, Constructing the frequency and wave normal distribution of whistler-mode wave power. J. Geophys. Res. 118, 1984–1991 (2013). doi:10.1002/jgra.50231

    Article  Google Scholar 

  • E. Whipple, R. Puetter, M. Rosenberg, A two-dimensional, time-dependent, near-Earth magnetotail. Adv. Space Res. 11, 133–142 (1991). doi:10.1016/0273-1177(91)90024-E

    Article  ADS  Google Scholar 

  • L.B. Wilson III, C.A. Cattell, P.J. Kellogg, J.R. Wygant, K. Goetz, A. Breneman, K. Kersten, The properties of large amplitude whistler mode waves in the magnetosphere: propagation and relationship with geomagnetic activity. Geophys. Res. Lett. 38, 17107 (2011). doi:10.1029/2011GL048671

    ADS  Google Scholar 

  • J.R. Wygant, A. Keiling, C.A. Cattell, R.L. Lysak, M. Temerin, F.S. Mozer, C.A. Kletzing, J.D. Scudder, V. Streltsov, W. Lotko, C.T. Russell, Evidence for kinetic Alfvén waves and parallel electron energization at \(4\mbox{--}6~\mbox{R}_{E}\) altitudes in the plasma sheet boundary layer. J. Geophys. Res. 107, 1201 (2002). doi:10.1029/2001JA900113

    Article  Google Scholar 

  • M.A. Xapsos, P.M. O’Neill, T.P. O’Brien, Near-Earth space radiation models. IEEE Trans. Nucl. Sci. 60, 1691–1705 (2013). doi:10.1109/TNS.2012.2225846

    Article  ADS  Google Scholar 

  • K. Yamaguchi, T. Matsumuro, Y. Omura, D. Nunn, Ray tracing of whistler-mode chorus elements: implications for generation mechanisms of rising and falling tone emissions. Ann. Geophys. 31, 665–673 (2013). doi:10.5194/angeo-31-665-2013

    Article  ADS  Google Scholar 

  • K.H. Yearby, M.A. Balikhin, Y.V. Khotyaintsev, S.N. Walker, V.V. Krasnoselskikh, H.S.C.K. Alleyne, O. Agapitov, Ducted propagation of chorus waves: Cluster observations. Ann. Geophys. 29, 1629–1634 (2011). doi:10.5194/angeo-29-1629-2011

    Article  ADS  Google Scholar 

  • P.H. Yoon, V.S. Pandey, D.-H. Lee, Relativistic electron acceleration by oblique whistler waves. Phys. Plasmas 20(11), 112902 (2013). doi:10.1063/1.4831965

    Article  ADS  Google Scholar 

  • P.H. Yoon, V.S. Pandey, D.-H. Lee, Oblique nonlinear whistler wave. J. Geophys. Res. 119, 1851–1862 (2014). doi:10.1002/2013JA018993

    Article  Google Scholar 

  • X.-J. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. J. Geophys. Res. 120, 295–309 (2015). doi:10.1002/2014JA020455

    Article  Google Scholar 

  • X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, R.B. Horne, Extent of ECH wave emissions in the Earth’s magnetotail. J. Geophys. Res. 119, 5561–5574 (2014). doi:10.1002/2014JA019931

    Article  Google Scholar 

  • Y.L. Zhang, H. Matsumoto, Y. Omura, Linear and nonlinear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere. J. Geophys. Res. 98, 21 (1993). doi:10.1029/93JA01937

    Google Scholar 

  • H. Zhao, X. Li, Inward shift of outer radiation belt electrons as a function of Dst index and the influence of the solar wind on electron injections into the slot region. J. Geophys. Res. 118, 756–764 (2013). doi:10.1029/2012JA018179

    Article  Google Scholar 

Download references

Acknowledgements

A.A. and D.M. are grateful to A. Vasiliev for fruitful discussions and important inputs. A.A. appreciates the useful discussions with D. Shklyar and A. Demekhov.

V.K., A.A. and O.A. are grateful to D. Boscher and G. Rolland for persistent support of radiation belts studies in LPC2E. V.K. is grateful to CNES for financial support of the activities presented in this Review during years 2008–2014 through a series of grants Modele d’Ondes and Modele d’ondes pour le code SALAMMBO. Part of this work was also supported by a contract with CEA.

The work of O.A. and F.S.M. has been supported by JHU/APL Contract No. 922613 (RBSP-EFW), NASA contract NAS5-02099 and NASA Grant NNX09AE41G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Artemyev.

Appendix: Analytical Estimates of Trapped Electron Lifetimes

Appendix: Analytical Estimates of Trapped Electron Lifetimes

Let us consider first quasi-parallel waves. In this case, it has been shown (e.g., see Mourenas et al. 2014b) that when \(p\varOmega_{pe0}\omega^{1/2}/\varOmega_{ce0}^{3/2} > 1.5\) (a condition roughly equivalent to \(E \geq 100~\mbox{keV}\) for \(L \sim 5\)), trapped electron lifetimes \(\tau_{L}\) can be estimated as

$$ \tau_{L,\theta< 45^{\circ}}~[\mbox{s}] \approx \frac{{220[\text{pT}^{2}\cdot\text{s}^{2}/\text{rad}] }}{{B_{w}^{2}}} \frac{{p^{14/9} \gamma \omega _{m}^{7/9} \varOmega _{pe0}^{14/9} }}{{\varOmega _{ce0}^{12/9} }} $$
(75)

where from now on bounce-averaged RMS wave amplitude \(B_{w}\) is in pT, angular frequencies (plasma frequency \(\varOmega_{pe}\), electron cyclotron frequency \(\varOmega_{ce}\), and the mean frequency of the wave ensemble \(\omega_{m}\)) are in rad/s, and \(p=(\gamma^{2}-1)^{1/2}\) in the normalized momentum. At lower energy (typically for \(E < 100~\mbox{keV}\)), previous analytical estimates of pitch-angle diffusion rates (Mourenas et al. 2012b) must be sensibly modified, especially as concerns the effective latitudinal width \(\Delta\lambda_{R}\) of the domain where resonance exists. Such a modification stems from the progressive disappearance of cyclotron resonance at the lowest frequencies as electron energy diminishes, which decreases \(\Delta\lambda_{R}\). Let us assume an upper frequency cutoff for lower-band chorus waves at \(\omega_{UC} \sim \omega_{m}+\delta\omega \sim \varOmega_{ce0}/2\), where \(\omega_{m}\) and \(\delta\omega\) are the mean value and half-width of the gaussian frequency distribution. The latitude of resonance \(\lambda_{R, \omega}\) at a given frequency \(\omega\) can be estimated by combining first cyclotron resonance and first adiabatic invariant (Artemyev et al. 2013b): it is given by Eq. (27) for \(\omega = \omega_{m}\). The minimum frequency such that first cyclotron resonance is possible can be written approximately as \(\omega_{MIN} \sim \max(\omega_{LC}, \varOmega_{ce0}/(p^{2}\omega_{pe0}^{2}/\varOmega_{ce0}^{2} + 2\gamma))\) in the useful range \(\omega_{MIN} \sim (0.15-0.4)\varOmega_{ce0}\), using \(\omega_{LC} \simeq \omega_{m}-\delta\omega\). Further accounting for a possible confinement of the waves below a certain latitude \(\lambda^{+}\), it leads to a rough estimate of \(\Delta\lambda_{R}\):

$$ \Delta\lambda_{R} \sim \max\bigl(\min\bigl(\lambda^{+}, \lambda_{R,\omega_{UC}}\bigr) - \lambda_{R,\omega_{MIN}}, 0\bigr) $$
(76)

superseding the formula provided in the work by Artemyev et al. (2013b), which was valid mostly for \(E \geq 100~\mbox{keV}\). It gives finally ratio of trapped electron lifetimes calculated for energies \(E\) and \(E_{0}\) given in MeVs

$$ \frac{{\tau_{L,\theta< 45^{\circ}}(E)}}{{\tau_{L,\theta< 45^{\circ}}(E_{0})}} \simeq \frac{{((1 + 2E)^{2} -1)^{7/9} (1 + 2E) \Delta\lambda_{R}(E_{0}) }}{{((1 + 2E_{0})^{2} -1)^{7/9} (1 + 2E_{0}) \Delta\lambda_{R}(E) }} $$
(77)

over the range \(E \approx 5\mbox{--}5000~\mbox{keV}\) where cyclotron resonance exists at small \(\alpha_{0}\) in the outer radiation belt.

Let us turn now to very oblique lower-band chorus waves propagating near the resonance cone angle. In this case, one important factor is the level of Landau damping due to 100–500 eV suprathermal electrons: it should impose an upper-bound \(N_{\max}\) on the value of the wave refractive index \(N\) expected to increase with latitude (see Sect. 4.2 and Horne and Sazhin 1990; Mourenas et al. 2014b; Li et al. 2014a). Accordingly, assuming a low level of wave obliqueness at low latitudes \(|\lambda| < 15^{\circ}\) and a much higher level of wave obliqueness at higher latitudes (as often observed on board Cluster, see Artemyev et al. 2013b; Mourenas et al. 2014b; Agapitov et al. 2015a), electron lifetimes will be mainly determined by the inverse of the pitch-angle scattering rate at low equatorial pitch-angle \(\alpha_{0} < 30^{\circ}\), since strong scattering of electrons by very oblique waves occurs mainly for \(\sin\alpha_{0} < 2\omega/\varOmega_{ce0}\) (Mourenas et al. 2012b). One important factor is that many cyclotron \(n\)-resonances can contribute to scattering in the case of very oblique waves as compared with parallel waves for which only the fundamental resonance exists at low \(\alpha_{0} \ll 90^{\circ}- \theta_{\max}\) (see estimates of the number \(\mathcal {N}_{res}\) of contributing resonances in Sect. 2, and Mourenas et al. 2012b).

Rough analytical estimates of \(\tau_{L}\) in the presence of very oblique chorus waves have been derived by Mourenas et al. (2012b, 2014b):

$$ \tau_{L,\theta>60^{\circ}}~[\mbox{s}] \approx \frac{{40~[\text{pT}^{2}\cdot\text{s}^{2}/\text{rad}] \gamma p \varOmega_{pe0} }}{{B_{w}^{2}}}, $$
(78)

which are valid typically for \(E \geq 100~\mbox{keV}\), provided that \(N_{\max} \approx N_{limit}\) (see Sects. 2 and 4.2) and for a scaling \(N_{\max} \propto \varOmega_{pe}/\omega\) as used in previous papers (e.g., Mourenas et al. 2014b). For a different scaling of \(N_{\max}\), the preceding expression would need to be modified.

Moreover, at low energy, one must take into account three important facts: (i) at low enough energy, there will remain only two or three cyclotron resonances, (ii) the \(|n| = 1\) resonance contribution to scattering, proportional to \(J_{0}^{2} \sim 1\), as well as the \(|n| = 2\) resonance contribution proportional to \(J_{1}(x)^{2} \approx 2(1+0.81/2)/(\pi x)\), are both larger by a factor \(\sim 3/2\) than the asymptotic value \(\simeq 2/(\max(1,|n|)\pi x)\) assumed for commodity in our previous estimates, and (iii) the relative width \(\Delta x/x\) of the peak of \(J_{|n|-1}^{2}(x)\) is also larger at the smallest \(|n|\), varying approximately like \(1/\max(1,(|n|-1)^{1/2})\). A larger width \(\Delta x/x\) corresponds to a larger range of strong wave-particle coupling \(\Delta\lambda\) (\(\delta\omega\) or \(\Delta\theta\)) for fixed frequency (latitude), likely leading to a stronger scattering (Mourenas et al. 2012b).

Thus, for low enough electron energy such that the number of contributing resonances for oblique waves \(\mathcal{N}_{res,Obl} < 4\) at \(\alpha_{0} \approx 7^{\circ}-20^{\circ}\), the scattering rate should be multiplied by a factor \(\approx (3/2)\cdot 2 \sim 3\), reducing lifetimes by a similar amount (assuming that wave obliqueness is very small at low latitudes). This finally gives a rough multiplicative factor \(C_{LowE}\) to expression (78) for \(\tau_{L,\theta>60^{\circ}}\) with

$$ C_{LowE} \approx \frac{{50 \varOmega_{pe0}\omega_{m}^{1/3}}}{{N_{\max} \varOmega_{ce0}^{4/3}}} \frac{{1}}{{1 + 2 \min(1, C^{5}) }} $$
(79)

where \(C=60(\varOmega_{ce0}/\omega_{m})^{2/3}/(pN_{\max})\) and we used \(\mathcal{N}_{res,Obl}\) at \(\alpha_{0} \approx 10^{\circ}\) while \(N_{\max}\) should be evaluated at \(\lambda \sim 30^{\circ}\mbox{--}35^{\circ}\) where oblique wave coupling with particles is then stronger (Artemyev et al. 2013b; Mourenas et al. 2014b; Li et al. 2014a). Lifetime’s variation with \(E\) is consequently given approximately by

$$ \frac{{\tau_{L,\theta>60^{\circ}}(E)}}{{\tau_{L,\theta>60^{\circ}}(E_{0})}} \simeq \frac{{\sqrt{(1 + 2E)^{2} -1}(1 + 2E) C_{LowE}(E) }}{{\sqrt{(1 + 2E_{0})^{2} -1}(1 + 2E_{0}) C_{LowE}(E_{0}) }} $$
(80)

over the range \(E \approx 5\mbox{--}5000~\mbox{keV}\) in the outer radiation belt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemyev, A., Agapitov, O., Mourenas, D. et al. Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics. Space Sci Rev 200, 261–355 (2016). https://doi.org/10.1007/s11214-016-0252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0252-5

Keywords

Navigation