Skip to main content
Log in

\(F\)-Region Dynamo Simulations at Low and Mid-Latitude

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The “\(F\)-layer dynamo” or “\(F\)-region dynamo” concept was introduced by Rishbeth (Planet. Space Sci. 19(2):263–267, 1971a; 19(3):357–369, 1971b). \(F\)-region winds blow the plasma across magnetic field lines setting up transverse drifts and polarization electric fields leading to equatorial downward current during the daytime and upward current at dusk which were confirmed by satellite observations. In the daytime the \(F\)-region current can close through the highly conducting \(E\)-region. At night when the \(E\)-region conductivity is small the \(F\)-region dynamo generates polarization electric fields and is mainly responsible for the nighttime drift variations. In the evening the \(F\)-region dynamo is instrumental in generating an enhanced vertical drift, the pre-reversal enhancement. The current due to the \(F\)-region dynamo is larger at day than at night, but the \(F\)-region dynamo contributes approximately 10–15 % to the total current at day versus approximately 50 % at night (Rishbeth in J. Atmos. Sol.-Terr. Phys. 43(56):387–392, 1981). The \(F\)-region dynamo effects strongly depend on the Pedersen conductivity and therefore on the solar cycle. We will review the influence of the \(F\)-region dynamo on the ionosphere in general and particularly focus on the role it plays in generating ionospheric currents and magnetic perturbations at low-earth orbiting (LEO) satellite altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • T.L. Aggson, N.C. Maynard, F.A. Herrero, H.G. Mayr, L.H. Brace, M.C. Liebrecht, Geomagnetic equatorial anomaly in zonal plasma flow. J. Geophys. Res. 92(A1), 311–315 (1987). doi:10.1029/JA092iA01p00311

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, R. Dewitt, Dynamo action in the ionosphere and motions of the magnetospheric plasma. Planet. Space Sci. 13(8), 737–744 (1965). doi:10.1016/0032-0633(65)90110-8

    Article  ADS  Google Scholar 

  • P. Alken, S. Maus, A.D. Richmond, A. Maute, The ionospheric gravity and diamagnetic current systems. J. Geophys. Res. 116(A12), a12316 (2011). doi:10.1029/2011JA017126

    Article  ADS  Google Scholar 

  • P. Alken, A.D. Richmond, A. Maute, Ionospheric gravity and pressure gradient current. Space Sci. Rev. (2016, submitted)

  • B. Anderson, H. Korth, C. Waters, D. Green, P. Stauning, Statistical birkeland current distributions from magnetic field observations by the Iridium constellation. Ann. Geophys. 26(3), 671–687 (2008). Copernicus GmbH

    Article  ADS  Google Scholar 

  • D. Anderson, M. Mendillo, Ionospheric conditions affecting the evolution of equatorial plasma depletions. Geophys. Res. Lett. 10(7), 541–544 (1983)

    Article  ADS  Google Scholar 

  • E.V. Appleton, The anomalous equatorial belt in the F2-layer. J. Atmos. Sol.-Terr. Phys. 5(1), 348–351 (1954). doi:10.1016/0021-9169(54)90054-9

    Article  ADS  Google Scholar 

  • W.G. Baker, D.F. Martyn, Electric currents in the ionosphere. I. The conductivity. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 246(913), 281–294 (1953). doi:10.1098/rsta.1953.0016

    Article  ADS  MATH  Google Scholar 

  • D. Bilitza, K. Rawer, L. Bossy, T. Gulyaeva, International reference ionosphere—past, present, and future: I. Electron density. Adv. Space Res. 13(3), 3–13 (1993)

    Article  ADS  Google Scholar 

  • R.G. Burnside, J.C.G. Walker, R.A. Behnke, C.A. Gonzales, Polarization electric fields in the nighttime F layer at Arecibo. J. Geophys. Res. 88(A8), 6259–6266 (1983). doi:10.1029/JA088iA08p06259

    Article  ADS  Google Scholar 

  • Y.-M. Cho, G. Shepherd, Resolving daily wave 4 nonmigrating tidal winds at equatorial and midlatitudes with WINDII: DE3 and SE2. J. Geophys. Res. 120(11), 10,053–10,068 (2015). doi:10.1002/2015JA021903

    Article  Google Scholar 

  • W.R. Coley, R.A. Heelis, Low-latitude zonal and vertical ion drifts seen by DE 2. J. Geophys. Res. 94(A6), 6751–6761 (1989). doi:10.1029/JA094iA06p06751

    Article  ADS  Google Scholar 

  • W.R. Coley, R.A. Heelis, N.W. Spencer, Comparison of low-latitude ion and neutral zonal drifts using DE 2 data. J. Geophys. Res. 99(A1), 341–348 (1994). doi:10.1029/93JA02205

    Article  ADS  Google Scholar 

  • W.R. Coley, R.A. Stoneback, R.A. Heelis, M.R. Hairston, Topside equatorial zonal ion velocities measured by C/NOFS during rising solar activity. Ann. Geophys. 32(2), 69–75 (2014). doi:10.5194/angeo-32-69-2014

    Article  ADS  Google Scholar 

  • D.J. Crain, R.A. Heelis, G.J. Bailey, Effects of electrical coupling on equatorial ionospheric plasma motions: when is the F-region a dominant driver in the low-latitude dynamo? J. Geophys. Res. 98(A4), 6033–6037 (1993a). doi:10.1029/92JA02195

    Article  ADS  Google Scholar 

  • D.J. Crain, R.A. Heelis, G.J. Bailey, A.D. Richmond, Low-latitude plasma drifts from a simulation of the global atmospheric dynamo. J. Geophys. Res. 98(A4), 6039–6046 (1993b). doi:10.1029/92JA02196

    Article  ADS  Google Scholar 

  • R.E. Dickinson, E. Ridley, R. Roble, Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci. 41(2), 205–219 (1984)

    Article  ADS  Google Scholar 

  • V. Doumbia, A. Maute, A.D. Richmond, Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model. J. Geophys. Res. 112(A9), a09309 (2007). doi:10.1029/2007JA012308

    Article  ADS  Google Scholar 

  • J.V. Eccles, Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 103(A11), 26,709–26,719 (1998a). doi:10.1029/98JA02656

    Article  ADS  Google Scholar 

  • J.V. Eccles, A simple model of low-latitude electric fields. J. Geophys. Res. 103(A11), 26,699–26,708 (1998b). doi:10.1029/98JA02657

    Article  ADS  Google Scholar 

  • J.V. Eccles, The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J. Geophys. Res. 109(A5), A05304 (2004). doi:10.1029/2003JA010023

    Article  ADS  Google Scholar 

  • J.V. Eccles, N. Maynard, G. Wilson, Study of the evening plasma drift vortex in the low-latitude ionosphere using San Marco electric field measurements. J. Geophys. Res. 104(A12), 28,133–28,143 (1999). doi:10.1029/1999JA900373

    Article  ADS  Google Scholar 

  • J.V. Eccles, J.P.St. Maurice, R.W. Schunk, Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res. 120(6), 4950–4970 (2015). doi:10.1002/2014JA020664

    Article  Google Scholar 

  • S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. 115(A5), A05308 (2010). doi:10.1029/2009JA014894

    Article  ADS  Google Scholar 

  • W. Evonosky, A.D. Richmond, T.-W. Fang, A. Maute, Ion-neutral coupling effects on low-latitude thermospheric evening winds. J. Geophys. Res. Space Phys. 121, 4638–4646 (2016). doi:10.1002/2016JA022382

    Article  ADS  Google Scholar 

  • D.T. Farley, A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field. J. Geophys. Res. 64(9), 1225–1233 (1959). doi:10.1029/JZ064i009p01225

    Article  ADS  Google Scholar 

  • D.T. Farley, E. Bonelli, B.G. Fejer, M.F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91(A12), 13,723–13,728 (1986). doi:10.1029/JA091iA12p13723

    Article  ADS  Google Scholar 

  • B. Fejer, D. Farley, R. Woodman, C. Calderon, Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophys. Res. 84(A10), 5792–5796 (1979). doi:10.1029/JA084iA10p05792

    Article  ADS  Google Scholar 

  • B.G. Fejer, The equatorial ionospheric electric fields. A review. J. Atmos. Sol.-Terr. Phys. 43(5–6), 377–386 (1981). doi:10.1016/0021-9169(81)90101-X

    Article  ADS  Google Scholar 

  • B.G. Fejer, Low latitude ionospheric electrodynamics. Space Sci. Rev. 158, 145–166 (2011). doi:10.1007/s11214-010-9690-7

    Article  ADS  Google Scholar 

  • B.G. Fejer, E. Kudeki, D.T. Farley, Equatorial F region zonal plasma drifts. J. Geophys. Res. 90(A12), 12,249–12,255 (1985). doi:10.1029/JA090iA12p12249

    Article  ADS  Google Scholar 

  • B.G. Fejer, E.R. de Paula, S.A. González, R.F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 96(A8), 13,901–13,906 (1991). doi:10.1029/91JA01171

    Article  ADS  Google Scholar 

  • B.G. Fejer, J.R. Souza, A.S. Santos, A.E. Costa Pereira, Climatology of F region zonal plasma drifts over Jicamarca. J. Geophys. Res. 110(A12), a12310 (2005). doi:10.1029/2005JA011324

    Article  ADS  Google Scholar 

  • B.G. Fejer, B.D. Tracy, R.F. Pfaff, Equatorial zonal plasma drifts measured by the C/NOFS satellite during the 2008–2011 solar minimum. J. Geophys. Res. 118(6), 3891–3897 (2013). doi:10.1002/jgra.50382

    Article  Google Scholar 

  • B.G. Fejer, D. Hui, J.L. Chau, E. Kudeki, Altitudinal dependence of evening equatorial F region vertical plasma drifts. J. Geophys. Res. 119(7), 5877–5890 (2014). doi:10.1002/2014JA019949

    Article  Google Scholar 

  • C.G. Fesen, G. Crowley, R.G. Roble, A.D. Richmond, B.G. Fejer, Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophys. Res. Lett. 27(13), 1851–1854 (2000). doi:10.1029/2000GL000061

    Article  ADS  Google Scholar 

  • J.M. Forbes, The equatorial electrojet. Rev. Geophys. 19(3), 469–504 (1981)

    Article  ADS  Google Scholar 

  • J. Geisler, A numerical study of the wind system in the middle thermosphere. J. Atmos. Sol.-Terr. Phys. 29(12), 1469–1482 (1967). doi:10.1016/0021-9169(67)90100-6

    Article  ADS  Google Scholar 

  • D.L. Green, C.L. Waters, B.J. Anderson, H. Korth, Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both northern and southern hemispheres. Ann. Geophys. 27(4), 1701–1715 (2009). doi:10.5194/angeo-27-1701-2009

    Article  ADS  Google Scholar 

  • G. Haerendel, J.V. Eccles, S. Çakir, Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J. Geophys. Res. 97(A2), 1209–1223 (1992). doi:10.1029/91JA02226

    Article  ADS  Google Scholar 

  • M. Hagan, J. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(1062), 10–1029 (2003)

    Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., Atmos. 107(D24), ACL 6-1–ACL 6-15 (2002). doi:10.1029/2001JD001236

    Article  Google Scholar 

  • M.E. Hagan, A. Maute, R.G. Roble, Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res. 114(A1), A01302 (2009). doi:10.1029/2008JA013637

    Article  ADS  Google Scholar 

  • K. Häusler, H. Lühr, Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys. 27(7), 2643–2652 (2009)

    Article  ADS  Google Scholar 

  • K. Häusler, H. Lühr, M.E. Hagan, A. Maute, R.G. Roble, Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res., Atmos. 115(D1), D00I08 (2010). doi:10.1029/2009JD012394

    Google Scholar 

  • A. Hedin, Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 96(A2), 1159–1172 (1991)

    Article  ADS  Google Scholar 

  • A.E. Hedin et al., Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Sol.-Terr. Phys. 58(13), 1421–1447 (1996)

    Article  ADS  Google Scholar 

  • R. Heelis, P. Kendall, R. Moffett, D. Windle, H. Rishbeth, Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds. Planet. Space Sci. 22(5), 743–756 (1974). doi:10.1016/0032-0633(74)90144-5

    Article  ADS  Google Scholar 

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004). doi:10.1016/j.jastp.2004.01.034

    Article  ADS  Google Scholar 

  • R.A. Heelis, J.K. Lowell, R.W. Spiro, A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. 87(A8), 6339–6345 (1982). doi:10.1029/JA087iA08p06339

    Article  ADS  Google Scholar 

  • R.A. Heelis, G. Crowley, F. Rodrigues, A. Reynolds, R. Wilder, I. Azeem, A. Maute, The role of zonal winds in the production of a pre-reversal enhancement in the vertical ion drift in the low latitude ionosphere. J. Geophys. Res. 117(A8), a08308 (2012). doi:10.1029/2012JA017547

    Article  ADS  Google Scholar 

  • M. Hirono, A theory of diurnal magnetic variations in equatorial regions and conductivity of the ionospheric E region. J. Geomagn. Geoelectr. 4, 7–21 (1952)

    Article  Google Scholar 

  • J.D. Huba, G. Joyce, J. Krall, C.L. Siefring, P. Bernhardt, Self-consistent modeling of equatorial dawn density depletions with SAMI3. Geophys. Res. Lett. 37(3), L03104 (2010a). doi:10.1029/2009GL041492

    Article  ADS  Google Scholar 

  • J.D. Huba, G. Joyce, J. Krall, C.L. Siefring, P.A. Bernhardt, Correction to “Self-consistent modeling of equatorial dawn density depletions with SAMI3”. Geophys. Res. Lett. 37(20), L20104 (2010b). doi:10.1029/2010GL045004

    Article  ADS  Google Scholar 

  • T. Iijima, Field-aligned currents in geospace: substance and significance, in Magnetospheric Current Systems, ed. by S.-I. Ohtani, R. Fujii, M. Hesse, R.L. Lysak (Am. Geophys. Union, Washington, 2000). doi:10.1029/GM118p0107

    Google Scholar 

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33(15), L15108 (2006). doi:10.1029/2006GL026161

    Article  ADS  Google Scholar 

  • H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, A. Saito, Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116(A1), a01316 (2011). doi:10.1029/2010JA015925

    Article  ADS  Google Scholar 

  • M. Jones, J.M. Forbes, M.E. Hagan, A. Maute, Non-migrating tides in the ionosphere-thermosphere: in situ versus tropospheric sources. J. Geophys. Res. 118(5), 2438–2451 (2013). doi:10.1002/jgra.50257

    Article  Google Scholar 

  • M.V. Klimenko, V.V. Klimenko, V.V. Bryukhanov, Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: the dynamo field and equatorial electrojet. Geomagn. Aeron. 46, 457–466 (2006). doi:10.1134/S0016793206040074

    Article  ADS  MATH  Google Scholar 

  • E. Kudeki, S. Bhattacharyya, Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F. J. Geophys. Res. 104(A12), 28,163–28,170 (1999). doi:10.1029/1998JA900111

    Article  ADS  Google Scholar 

  • E. Kudeki, B.G. Fejer, D.T. Farley, H.M. Ierkic, Interferometer studies of equatorial F region irregularities and drifts. Geophys. Res. Lett. 8(4), 377–380 (1981). doi:10.1029/GL008i004p00377

    Article  ADS  Google Scholar 

  • W.K. Lee, H. Kil, Y.-S. Kwak, L.J. Paxton, Morphology of the postsunset vortex in the equatorial ionospheric plasma drift. Geophys. Res. Lett. 42(1), 9–14 (2015). doi:10.1002/2014GL062019

    Article  ADS  Google Scholar 

  • R. Lindzen, Atmospheric tides. Annu. Rev. Earth Planet. Sci. 7, 199–225 (1979)

    Article  ADS  Google Scholar 

  • H. Lühr, S. Maus, Direct observation of the F region dynamo currents and the spatial structure of the EEJ by CHAMP. Geophys. Res. Lett. 33(24), l24102 (2006). doi:10.1029/2006GL028374

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial appleton anomaly: its characteristics and impact on geomagnetic field modeling. Geophys. Res. Lett. 30(17), 1906 (2003). doi:10.1029/2003GL017407

    Article  ADS  Google Scholar 

  • H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42(9), 3069–3075 (2015). doi:10.1002/2015GL063662

    Article  ADS  Google Scholar 

  • H. Lühr, G. Kervalishvili, J. Rauberg, C. Stolle, Zonal currents in the F region deduced from Swarm constellation measurements. J. Geophys. Res. (2016). doi:10.1002/2015JA022051

    Google Scholar 

  • M.K. Madhav Haridas, G. Manju, T.K. Pant, On the solar activity variations of nocturnal F region vertical drifts covering two solar cycles in the Indian longitude sector. J. Geophys. Res. 120(2), 1445–1451 (2015). doi:10.1002/2014JA020561

    Article  Google Scholar 

  • H. Maeda, T. Iyemori, T. Araki, T. Kamei, New evidence of a meridional current system in the equatorial ionosphere. Geophys. Res. Lett. 9(4), 337–340 (1982). doi:10.1029/GL009i004p00337

    Article  ADS  Google Scholar 

  • H. Maeda, T. Kamei, T. Iyemori, T. Araki, Geomagnetic perturbations at low latitudes observed by Magsat. J. Geophys. Res., Solid Earth 90(B3), 2481–2486 (1985). doi:10.1029/JB090iB03p02481

    Article  Google Scholar 

  • T.J. Mathew, S.P. Nayar, Vertical shear at the equatorial F-region ionosphere during post-sunset hours. Adv. Space Res. 49(8), 1277–1281 (2012). doi:10.1016/j.asr.2012.01.011

    Article  ADS  Google Scholar 

  • N. Matuura, Electric fields deduced from the thermospheric model. J. Geophys. Res. 79(31), 4679–4689 (1974). doi:10.1029/JA079i031p04679

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, A gravity-driven electric current in the Earth’s ionosphere identified in CHAMP satellite magnetic measurements. Geophys. Res. Lett. 33(2), L02812 (2006). doi:10.1029/2005GL024436

    Article  ADS  Google Scholar 

  • A. Maute, A.D. Richmond, R.G. Roble, Sources of low-latitude ionospheric ExB drifts and their variability. J. Geophys. Res. 117(A6), A06312 (2012). doi:10.1029/2011JA017502

    Article  ADS  Google Scholar 

  • G.H. Millward, I.C.F. Müller-Wodarg, A.D. Aylward, T.J. Fuller-Rowell, A.D. Richmond, R.J. Moffett, An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res. 106(A11), 24,733–24,744 (2001). doi:10.1029/2000JA000342

    Article  ADS  Google Scholar 

  • A. Namgaladze, Y. Korenkov, V. Klimenko, F.B.I.V. Karpov, V. Surotkin, T. Glushchenko, N. Naumova, Global model of the thermosphere-ionosphere-protonosphere system. Pure Appl. Geophys. 127, 219–254 (1988)

    Article  ADS  Google Scholar 

  • J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave 4”? J. Geophys. Res. 116(A1), A01306 (2011). doi:10.1029/2010JA015911

    Article  ADS  Google Scholar 

  • S. Ohtani, G. Ueno, T. Higuchi, Comparison of large-scale field-aligned currents under sunlit and dark ionospheric conditions. J. Geophys. Res. 110(A9), A09230 (2005). doi:10.1029/2005JA011057

    Article  ADS  Google Scholar 

  • N. Olsen, Ionospheric F region currents at middle and low latitudes estimated from magsat data. J. Geophys. Res. 102(A3), 4563–4576 (1997). doi:10.1029/96JA02949

    Article  ADS  Google Scholar 

  • E.E. Pacheco, R.A. Heelis, S.-Y. Su, Quiet time meridional (vertical) ion drifts at low and middle latitudes observed by ROCSAT-1. J. Geophys. Res. 115(A9), a09308 (2010). doi:10.1029/2009JA015108

    Article  ADS  Google Scholar 

  • D. Pancheva, Y. Miyoshi, P. Mukhtarov, H. Jin, H. Shinagawa, H. Fujiwara, Global response of the ionosphere to atmospheric tides forced from below: comparison between COSMIC measurements and simulations by atmosphere-ionosphere coupled model GAIA. J. Geophys. Res. 117(A7), A07319 (2012). doi:10.1029/2011JA017452

    Article  ADS  Google Scholar 

  • J. Park, H. Lühr, Effects of sudden stratospheric warming (SSW) on the lunitidal modulation of the F-region dynamo. J. Geophys. Res. 117(A9), A09320 (2012). doi:10.1029/2012JA018035

    ADS  Google Scholar 

  • J. Park, H. Lühr, Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations. Ann. Geophys. 31(6), 1035–1044 (2013)

    Article  ADS  Google Scholar 

  • J. Park, H. Lühr, K.W. Min, Characteristics of F-region dynamo currents deduced from champ magnetic field measurements. J. Geophys. Res. 115(A10), a10302 (2010). doi:10.1029/2010JA015604

    ADS  Google Scholar 

  • J. Park, H. Lühr, K.W. Min, Climatology of the inter-hemispheric field-aligned current system in the equatorial ionosphere as observed by CHAMP. Ann. Geophys. 29, 573–582 (2011). doi:10.5194/angeo-29-573-2011

    Article  ADS  Google Scholar 

  • T.A. Potemra, Field-aligned (Birkeland) currents. Space Sci. Rev. 42(3–4), 295–311 (1985)

    ADS  Google Scholar 

  • L. Qian et al., The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System. Geophys. Monogr. Ser., vol. 201 (2014), pp. 73–83

    Chapter  Google Scholar 

  • R. Rastogi, The equatorial electrojet: magnetic and ionospheric effects. Geomagnetism 3, 461–525 (1989)

    Google Scholar 

  • Z. Ren, W. Wan, L. Liu, GCITEM-IGGCAS: a new global coupled ionosphere-thermosphere-electrodynamics model. J. Atmos. Sol.-Terr. Phys. 71(17), 2064–2076 (2009)

    Article  ADS  Google Scholar 

  • A. Richmond, Ionospheric wind dynamo theory: a review. J. Geomagn. Geoelectr. 31(3), 287–310 (1979)

    Article  ADS  Google Scholar 

  • A. Richmond, A. Maute, Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System (2014), pp. 57–71. doi:10.1002/9781118704417.ch6

    Chapter  Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47(2), 191–212 (1995)

    Article  Google Scholar 

  • A.D. Richmond, T.-W. Fang, Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow. J. Geophys. Res. (2015). doi:10.1002/2014JA020935

    Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992). doi:10.1029/92GL00401

    Article  ADS  Google Scholar 

  • A.D. Richmond, T.-W. Fang, A. Maute, Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. J. Geophys. Res. (2015). doi:10.1002/2014JA020934

    Google Scholar 

  • H. Rishbeth, The F-layer dynamo. Planet. Space Sci. 19(2), 263–267 (1971a)

    Article  ADS  Google Scholar 

  • H. Rishbeth, Polarization fields produced by winds in the equatorial F-region. Planet. Space Sci. 19(3), 357–369 (1971b). doi:10.1016/0032-0633(71)90098-5

    Article  ADS  Google Scholar 

  • H. Rishbeth, The F-region dynamo. J. Atmos. Sol.-Terr. Phys. 43(56), 387–392 (1981). Equatorial Aeronomy—I. doi:10.1016/0021-9169(81)90102-1

    Article  ADS  Google Scholar 

  • H. Rishbeth, The ionospheric E-layer and F-layer dynamos: a tutorial review. J. Atmos. Sol.-Terr. Phys. 59(15), 1873–1880 (1997). doi:10.1016/S1364-6826(97)00005-9

    Article  ADS  Google Scholar 

  • R. Roble, E. Ridley, A. Richmond, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988)

    Article  ADS  Google Scholar 

  • R.G. Roble, Modeling the dynamics of the coupled thermosphere and ionosphere, in Solar-Terrestrial Energy Program, ed. by D.N. Baker, V.O. Papitashvili, M.J. Teague (1994), p. 765

    Google Scholar 

  • F.S. Rodrigues, G. Crowley, R.A. Heelis, A. Maute, A. Reynolds, On TIE-GCM simulation of the evening equatorial plasma vortex. J. Geophys. Res. 117(A5), A05307 (2012). doi:10.1029/2011JA017369

    Article  ADS  Google Scholar 

  • L. Scherliess, B.G. Fejer, Radar and satellite global equatorial F-region vertical drift model. J. Geophys. Res. 104(A4), 6829–6842 (1999)

    Article  ADS  Google Scholar 

  • R.M. Shore, K.A. Whaler, S. Macmillan, C. Beggan, N. Olsen, T. Spain, A. Aruliah, Ionospheric midlatitude electric current density inferred from multiple magnetic satellites. J. Geophys. Res. 118(9), 5813–5829 (2013). doi:10.1002/jgra.50491

    Article  Google Scholar 

  • B. Stewart, Terrestrial magnetism. Encycl. Britannica 16(181), 31 (1882)

    Google Scholar 

  • R. Stoneback, R. Heelis, A. Burrell, W. Coley, B.G. Fejer, E. Pacheco, Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J. Geophys. Res. 116(A12), A12327 (2011)

    Article  ADS  Google Scholar 

  • M. Takeda, H. Maeda, F-region dynamo in the evening—interpretation of equatorial \(\delta\)d anomaly found by magsat. J. Atmos. Sol.-Terr. Phys. 45(6), 401–408 (1983)

    Article  ADS  Google Scholar 

  • E. Thébault et al., International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1), 1–19 (2015)

    Article  Google Scholar 

  • R. Tozzi, M. Pezzopane, P. De Michelis, M. Piersanti, Applying a curl-B technique to Swarm vector data to estimate nighttime F region current intensities. Geophys. Res. Lett. 42(15), 6162–6169 (2015)

    Article  ADS  Google Scholar 

  • R. Tsunoda, R. Livingston, C. Rino, Evidence of a velocity shear in bulk plasma motion associated with the post-sunset rise of the equatorial F-layer. Geophys. Res. Lett. 8(7), 807–810 (1981)

    Article  ADS  Google Scholar 

  • H. Volland, Coupling between the neutral tidal wind and the ionospheric dynamo current. J. Geophys. Res. 81(10), 1621–1628 (1976a)

    Article  ADS  Google Scholar 

  • H. Volland, The atmospheric dynamo. J. Atmos. Sol.-Terr. Phys. 38(8), 869–877 (1976b)

    Article  ADS  Google Scholar 

  • D. Weimer, Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res. 106(A7), 12,889–12,902 (2001)

    Article  ADS  Google Scholar 

  • R.F. Woodman, Vertical drift velocities and east-west electric fields at the magnetic equator. J. Geophys. Res. 75(31), 6249–6259 (1970)

    Article  ADS  Google Scholar 

  • C. Xiong, H. Lühr, C. Stolle, Seasonal and latitudinal variations of the electron density nonmigrating tidal spectrum in the topside ionospheric F region as resolved from CHAMP observations. J. Geophys. Res. 119(12), 10,416–10,425 (2014). doi:10.1002/2014JA020354

    Article  Google Scholar 

  • C. Xiong, Y. Zhou, H. Lühr, S. Ma, Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations. Ann. Geophys. 33, 185–196 (2015)

    Article  ADS  Google Scholar 

  • K. Yamashita, S. Miyahara, Y. Miyoshi, K. Kawano, J. Ninomiya, Seasonal variation of non-migrating semidiurnal tide in the polar MLT region in a general circulation model. J. Atmos. Sol.-Terr. Phys. 64(811), 1083–1094 (2002). doi:10.1016/S1364-6826(02)00059-7

    Article  ADS  Google Scholar 

  • Y. Yamazaki, A. Maute, Sq and EEJ—a review on the daily variation of the geomagnetic field caused by ionopsheric dynamo currents. Space Sci. Rev. (2016, submitted)

Download references

Acknowledgements

This work was supported by NSF grant AGS-1135446. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Maute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maute, A., Richmond, A.D. \(F\)-Region Dynamo Simulations at Low and Mid-Latitude. Space Sci Rev 206, 471–493 (2017). https://doi.org/10.1007/s11214-016-0262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0262-3

Keywords

Navigation