Skip to main content
Log in

The \(F\)-Region Gravity and Pressure Gradient Current Systems: A Review

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The ionospheric gravity and pressure-gradient current systems are most prominent in the low-latitude \(F\)-region due to the plasma density enhancement known as the equatorial ionization anomaly (EIA). This enhancement of plasma density which builds up during the day and lasts well into the evening supports a toroidal gravity current which flows eastward around the Earth in the \(F\)-region during the daytime and evening, and eventually returns westward through the \(E\)-region. The existence of pressure-gradients in the EIA region also gives rise to a poloidal diamagnetic current system, whose flow direction acts to reduce the ambient geomagnetic field inside the plasma. The gravity and pressure-gradient currents are among the weaker ionospheric sources, with current densities of a few \(\mbox{nA/m}^{2}\), however they produce clear signatures of about 5–7 nT in magnetic measurements made by low-Earth orbiting satellites. In this work, we review relevant observational and modeling studies of these two current systems and present new results from a 3D ionospheric electrodynamics model which allows us to visualize the entire flow pattern of these currents throughout the ionosphere as well as calculate their magnetic perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. Space Phys. (2016). doi:10.1002/2015JA022163

    Google Scholar 

  • P. Alken, S. Maus, A.D. Richmond, A. Maute, The ionospheric gravity and diamagnetic current systems. J. Geophys. Res. (2011). doi:10.1029/2011JA017126

    Google Scholar 

  • D.N. Anderson, Modeling the ambient, low latitude F-region ionosphere – a review. J. Atmos. Terr. Phys. 43(8), 753–762 (1981)

    Article  ADS  Google Scholar 

  • W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1997)

    MATH  Google Scholar 

  • D. Bilitza, L.-A. McKinnell, B. Reinisch, T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future. J. Geod. 85, 909–920 (2011). doi:10.1007/s00190-010-0427-x

    ADS  Google Scholar 

  • F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plasma Physics, vol. 1 (Springer, New York, 2006)

    Google Scholar 

  • A. Chulliat, S. Maus, Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res., Solid Earth 119, 1531–1543 (2014). doi:10.1002/2013JB010604

    Article  ADS  Google Scholar 

  • V. Doumbia, A. Maute, A.D. Richmond, Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model. J. Geophys. Res. 112(A9), A09309. (2007). doi:10.1029/2007JA012308

    Article  ADS  Google Scholar 

  • M.W. Dunlop, J.-Y. Yang, Y.-Y. Yang, C. Xiong, H. Lühr, Y.V. Bogdanova, C. Shen, N. Olsen, Q.-H. Zhang, J.-B. Cao, H.-S. Fu, W.-L. Liu, C.M. Carr, P. Ritter, A. Masson, R. Haagmans, Simultaneous field-aligned currents at Swarm and Cluster satellites. Geophys. Res. Lett. 42(10), 3683–3691 (2015). doi:10.1002/2015GL063738

    Article  ADS  Google Scholar 

  • J.V. Eccles, The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J. Geophys. Res. (2004). doi:10.1029/2003JA010023

    Google Scholar 

  • J.M. Forbes, The equatorial electrojet. Rev. Geophys. Space Phys. 19(3), 469–504 (1981)

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006)

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics. International Geophysics Series (Academic Press Inc., San Diego, 1989). 9780124040137

    Google Scholar 

  • K. Laundal, A.D. Richmond, Magnetic coordinate systems. Space Sci. Rev. (2016, submitted)

  • F.J. Lowes, Measuring magnetic field in the ‘diamagnetic’ ionosphere. Geophys. J. Int. 171(1), 115–118 (2007). doi:10.1111/j.1365-246X.2007.03506.x

    Article  ADS  Google Scholar 

  • G.M. Lucas, A.J.G. Baumgaertner, J.P. Thayer, A global electric circuit model within a community climate model. J. Geophys. Res., Atmos. 120(23), 12054–12066 (2015). doi:10.1002/2015JD023562

    Article  ADS  Google Scholar 

  • H. Lühr, S. Maus, Direction observation of the F region dynamo currents and the spatial structure of the EEJ by CHAMP. Geophys. Res. Lett. (2006). doi:10.1029/2006GL028374

    Google Scholar 

  • H. Lühr, S. Maus, Solar cycle dependence of quiet-time magnetospheric currents and a model of their near-Earth magnetic fields. Earth Planets Space 62, 843–848 (2010)

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: its characteristics and impact on geomagnetic field modeling. Geophys. Res. Lett. 30(17), 1906 (2003). doi:10.1029/2003GL017407

    Article  ADS  Google Scholar 

  • H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite. J. Geophys. Res. (2004). doi:10.1029/2002JA009656

    Google Scholar 

  • H. Lühr, J. Park, C. Xiong, J. Rauberg, Alfvén wave characteristics of equatorial plasma irregularities in the ionosphere derived from CHAMP observations. Front. Phys. (2014a). doi:10.3389/fphy.2014.00047

    Google Scholar 

  • H. Lühr, C. Xiong, J. Park, J. Rauberg, Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations. Front. Phys. (2014b). doi:10.3389/fphy.2014.00015

    Google Scholar 

  • H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42(9), 3069–3075 (2015). doi:10.1002/2015GL063662

    Article  ADS  Google Scholar 

  • H. Lühr, G. Kervalishvili, J. Rauberg, C. Stolle, Zonal currents in the F region deduced from Swarm constellation measurements. J. Geophys. Res. 121, 638–648 (2016). doi:10.1002/2015JA022051

    Article  Google Scholar 

  • C. Manoj, H. Lühr, S. Maus, N. Nagarajan, Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data. J. Geophys. Res. (2006). doi:10.1029/2006JA011855

    Google Scholar 

  • S. Marsal, A.D. Richmond, A. Maute, B.J. Anderson, Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. J. Geophys. Res. 117(A6), A06308 (2012). doi:10.1029/2011JA017416

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, A gravity-driven electric current in the Earth’s ionosphere identified in CHAMP satellite magnetic measurements. Geophys. Res. Lett. (2006). doi:10.1029/2005GL024436

    Google Scholar 

  • S. Maus, M. Rother, C. Stolle, W. Mai, S. Choi, H. Lühr, D. Cooke, C. Roth, Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophys. Geosyst. (2006). doi:10.1029/2006GC001269

    Google Scholar 

  • S. Maus, H. Lühr, M. Rother, K. Hemant, G. Balasis, P. Ritter, C. Stolle, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem. Geophys. Geosyst. 8(5), Q05013 (2007). doi:10.1029/2006GC001521

    Article  ADS  Google Scholar 

  • S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62, 729–735 (2010)

    Article  ADS  Google Scholar 

  • A. Maute, A.D. Richmond, F-region dynamo simulations at low and mid-latitude. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0262-3

    Google Scholar 

  • J. Park, R. Ehrlich, H. Lühr, P. Ritter, Plasma irregularities in the high-latitude ionospheric F-region and their diamagnetic signatures as observed by CHAMP. J. Geophys. Res. 117(A10), A10322 (2012). doi:10.1029/2012JA018166

    Article  ADS  Google Scholar 

  • L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, in The NCAR TIE-GCM, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, New York, 2014), pp. 73–83. doi:10.1002/9781118704417.ch7

    Google Scholar 

  • C. Reigber, H. Lühr, P. Schwintzer, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies (Springer, Berlin, 2003). doi:10.1007/978-3-540-38366-6

    Book  Google Scholar 

  • A.D. Richmond, The computation of magnetic effects of field-aligned magnetospheric currents. J. Atmos. Terr. Phys. 36(2), 245–252 (1974). doi:10.1016/0021-9169(74)90044-0

    Article  ADS  Google Scholar 

  • A.D. Richmond, Ionospheric wind dynamo theory: a review. J. Geomagn. Geoelectr. 31, 287–310 (1979)

    Article  ADS  Google Scholar 

  • A.D. Richmond, Modeling the ionosphere wind dynamo: a review. Pure Appl. Geophys. 131(3), 413–435 (1989)

    Article  ADS  Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995a)

    Article  Google Scholar 

  • A.D. Richmond, in The Ionospheric Wind Dynamo: Effects of Its Coupling With Different Atmospheric Regions, ed. by R.M. Johnson, T.L. Killeen (American Geophysical Union, Washington, 1995b), pp. 49–65. doi:10.1029/GM087p0049

    Google Scholar 

  • A.D. Richmond, in Ionospheric Electrodynamics, ed. by G. Khazanov (CRC Press, Boca Raton, 2016), pp. 245–259. Chap. 14, in press

    Google Scholar 

  • A.D. Richmond, A. Maute, in Ionospheric Electrodynamics Modeling, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, New York, 2014), pp. 57–71. doi:10.1002/9781118704417.ch6

    Google Scholar 

  • H. Rishbeth, The F-layer dynamo. Planet. Space Sci. 19, 263–267 (1971)

    Article  ADS  Google Scholar 

  • H. Rishbeth, The F-region dynamo. J. Atmos. Terr. Phys. 43, 387–392 (1981)

    Article  ADS  Google Scholar 

  • H. Rishbeth, The ionospheric E-layer and F-layer dynamos—a tutorial review. J. Atmos. Sol.-Terr. Phys. 59(15), 1873–1880 (1997). doi:10.1016/S1364-6826(97)00005-9

    Article  ADS  Google Scholar 

  • P. Ritter, H. Lühr, J. Rauberg, Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65(11), 1285–1294 (2013). doi:10.5047/eps.2013.09.006

    Article  ADS  Google Scholar 

  • R. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. Cambridge Atmospheric and Space Science Series (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  • R.J. Stening, Modelling the low latitude F region. J. Atmos. Terr. Phys. 54(11–12), 1387–1412 (1992). doi:10.1016/0021-9169(92)90147-D

    Article  ADS  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 111(A2), A02304 (2006). doi:10.1029/2005JA011184

    Article  ADS  Google Scholar 

  • C. Stolle, C. Manoj, H. Lühr, S. Maus, P. Alken, Estimating the day time Equatorial Ionization Anomaly strength from electric field proxies. J. Geophys. Res. (2008). doi:10.1029/2007JA012781

    Google Scholar 

  • R. Tozzi, M. Pezzopane, P. De Michelis, M. Piersanti, Applying a curl-B technique to Swarm vector data to estimate nighttime F region current intensities. Geophys. Res. Lett. 42(15), 6162–6169 (2015). doi:10.1002/2015GL064841

    Article  ADS  Google Scholar 

  • K.Z. Zaka, A.T. Kobea, V. Doumbia, A.D. Richmond, A. Maute, N.M. Mene, O.K. Obrou, P. Assamoi, K. Boka, J.-P. Adohi, C. Amory-Mazaudier, Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: comparison with the observations. J. Geophys. Res. Space Phys. 115(A11), A11307 (2010). doi:10.1029/2010JA015417

    ADS  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF). A. M. and A.D. R. were supported by NSF award AGS-1135446. We gratefully acknowledge graphics support from the NCEI visual communications team and Deborah Misch of LMI Consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Alken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alken, P., Maute, A. & Richmond, A.D. The \(F\)-Region Gravity and Pressure Gradient Current Systems: A Review. Space Sci Rev 206, 451–469 (2017). https://doi.org/10.1007/s11214-016-0266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0266-z

Keywords

Navigation