Skip to main content
Log in

Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • S.-I. Akasofu, S. Chapman, On the asymmetric development of magnetic storm fields in low and middle latitudes. Planet. Space Sci. 12, 607–626 (1964)

    Article  ADS  Google Scholar 

  • P. Alken, S. Maus, A. Chulliat, C. Manoj, NOAA/NGDC candidate models for the 12th generation international geomagnetic reference field. Earth Planets Space 2015, 67–68 (2015)

    Google Scholar 

  • W.H. Campbell, An external current representation of the quiet nightside geomagnetic field level changes. J. Geomagn. Geoelectr. 36, 257–265 (1984)

    Article  Google Scholar 

  • P. C:son Brandt, S. Ohtani, D.G. Mitchell, M.-C. Fok, E.C. Roelof, R. Demajistre, Global ENA observations of the storm mainphase ring current: implications for skewed electric fields in the inner magnetosphere. Geophys. Res. Lett. 29(20), 1954 (2002). doi:10.1029/2002GL015160

    ADS  Google Scholar 

  • C.R. Clauer, R.L. McPherron, Mapping of local time, universal time development of magnetosphere substorms using midlatitude magnetic observations. J. Geophys. Res. 79, 2812–2820 (1974)

    ADS  Google Scholar 

  • S.W.H. Cowley, Magnetospheric asymmetries associated with the y-component of the IMF. Planet. Space Sci. 29, 79–96 (1981)

    Article  ADS  Google Scholar 

  • O. de La Beaujardière et al., C/NOFS: a mission to forecast scintillations. J. Atmos. Sol.-Terr. Phys. 66, 1573–1591 (2004). doi:10.1016/j.jastp.2004.07.030

    Article  ADS  Google Scholar 

  • A.J. Dessler, E.N. Parker, Hydromagnetic theory of geomagnetic storms. J. Geophys. Res. 64, 2239–2252 (1959)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, L. Toeffner-Claussen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015). doi:10.1186/s40623-015-0274-3

    Article  ADS  Google Scholar 

  • S. Haaland, J. Gjerløv, On the relation between asymmetries in the ring current and magnetopause current. J. Geophys. Res. Space Phys. 118, 7593–7604 (2013). doi:10.1002/2013JA019345

    Article  ADS  Google Scholar 

  • D.C. Hamilton, G. Gloekler, F.M. Ipavich, W. Stüdemann, B. Wilken, G. Kremser, Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14 343–14 355 (1988)

    Article  ADS  Google Scholar 

  • W.J. Hughes, The magnetopause, magnetotail, and magnetic reconnection, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge Univ. Press, Cambridge, 1995), pp. 227–287

    Google Scholar 

  • T. Iyemori, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variation. J. Geomagn. Geoelectr. 42, 1249–1265 (1990)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, C. Russell (eds.), Introduction to Space Physics (Cambridge Univ. Press, Cambridge, 1995)

    Google Scholar 

  • R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from Magsat data. J. Geophys. Res. 90, 2495–2509 (1985b)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, G.D. Mead, E.B. Fabiano, E.R. Lancaster, Initial geomagnetic field model from MAGSAT vector data. Geophys. Res. Lett. 7, 793–796 (1980)

    Article  ADS  Google Scholar 

  • G. Le, C.T. Russell, K. Takahashi, Morphology of the ring current derived from magnetic field observations. Ann. Geophys. 22, 1267–1295 (2004). doi:10.5194/angeo-22-1267-2004

    Article  ADS  Google Scholar 

  • G. Le, W.J. Burke, R.F. Pfaff, H. Freudenreich, S. Maus, H. Lühr, C/NOFS measurements of magnetic perturbations in the low-latitude ionosphere during magnetic storms. J. Geophys. Res. 116, A12230 (2011). doi:10.1029/2011JA017026

    ADS  Google Scholar 

  • V. Lesur, S. Macmillan, A. Thomson, A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001. Geophys. J. Int. 160, 79–88 (2005)

    Article  ADS  Google Scholar 

  • H. Lühr, S. Maus, Solar cycle dependence of magnetospheric currents and a model of their near-Earth magnetic field. Earth Planets Space 62, 843–848 (2010). doi:10.5047/eps.2010.07.012

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x

    Article  ADS  Google Scholar 

  • S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232

    ADS  Google Scholar 

  • S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation POMME magnetic model. Earth Planets Space 62, 729–735 (2010)

    Article  ADS  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, A05215 (2012). doi:10.1029/2012JA017586

    ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from magnetospheric state variables. J. Geophys. Res. 112, A01206 (2007). doi:10.1029/2006JA012015

    ADS  Google Scholar 

  • P.W. Olsen, The geomagnetic field and its extension into space. Adv. Space Res. 2(1), 13–17 (1982)

    Article  ADS  Google Scholar 

  • N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005)

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033

    Article  ADS  Google Scholar 

  • P. Ritter, H. Lühr, Near-Earth magnetic signature of magnetospheric substorms and an improved substorm current model. Ann. Geophys. 26, 2781–2793 (2008)

    Article  ADS  Google Scholar 

  • N. Sckopke, A general relation between the energy of trapped particles and the disturbance field near the Earth. J. Geophys. Res. 71, 3125–3130 (1966)

    Article  ADS  Google Scholar 

  • J.-H. Shue, P. Song, C.T. Russell, J.T. Steinberg, J.K. Chao, G. Zastenker, O.L. Vaisberg, S. Kokubun, H.J. Singer, T.R. Detman, H. Kawano, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103(A8), 17691–17700 (1998)

    Article  ADS  Google Scholar 

  • D.G. Sibeck, R.E. Lopez, E.C. Roelof, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 96(A4), 5489–5495 (1991). doi:10.1029/90JA02464

    Article  ADS  Google Scholar 

  • M. Sugiura, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 9–45 (1964)

    Google Scholar 

  • A. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169, 951–963 (2007). doi:10.1111/j.1365-246X.2007.03354.x

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, D.H. Fairfield, Global shape of the magnetotail current sheet as derived from Geotail and Polar data. J. Geophys. Res. 109, A03218 (2004). doi:10.1029/2003JA010062

    Article  ADS  Google Scholar 

  • C. Xiong, H. Lühr, An empirical model of the auroral oval derived from CHAMP field-aligned current signatures—Part 2. Ann. Geophys. 32, 623–631 (2014). doi:10.5194/angeo-32-623-2014

    Article  ADS  Google Scholar 

  • C. Xiong, H. Lühr, H. Wang, M.G. Johnsen, Determining the boundaries of the auroral oval from CHAMP field-aligned currents signatures—Part 1. Ann. Geophys. 32, 609–622 (2014). doi:10.5194/angeo-32-609-2014

    Article  ADS  Google Scholar 

  • Y. Yamazaki, A. Maute, Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. (2016), this issue

  • Q.-H. Zhang, M.W. Dunlop, M. Lockwood, R. Holme, Y. Kamide, W. Baumjohann, R.-Y. Liu, H.-G. Yang, E.E. Woodfield, H.-Q. Hu, B.-C. Zhang, S.-L. Liu, The distribution of the ring current: cluster observations. Ann. Geophys. 29, 1655–1662 (2011). doi:10.5194/angeo-29-1655-2011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article is based on results of the ISSI Workshop “Earth’s Magnetic Field: Understanding sources from the Earth’s interior and its environment”. The authors thank the International Space Science Institute in Bern, Switzerland, its staff and directors for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Lühr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lühr, H., Xiong, C., Olsen, N. et al. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents. Space Sci Rev 206, 521–545 (2017). https://doi.org/10.1007/s11214-016-0267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0267-y

Keywords

Navigation