Skip to main content
Log in

Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • M.A. Abdu, T. Maruyama, I.S. Batista, S. Saito, M. Nakamura, Ionospheric response to the October 2003 superstorm: longitudinal/local time effects over equatorial low and middle latitudes. J. Geophys. Res. 112, A10306 (2007). doi:10.1029/2006JA012228

    ADS  Google Scholar 

  • M. Blanc, Mid-latitude convection electric fields and their relation to ring current development. Geophys. Res. Lett. 5, 203–206 (1978)

    Article  ADS  Google Scholar 

  • M. Blanc, Magnetospheric convection effects at mid-latitudes 1. Saint-Santin observations. J. Geophys. Res. 88, 211–213 (1983a)

    Article  ADS  Google Scholar 

  • M. Blanc, Magnetospheric convection effects at mid-latitudes 3. Theoretical derivation of the disturbance convection pattern in the plasmasphere. J. Geophys. Res. 88, 235–251 (1983b)

    Article  ADS  Google Scholar 

  • M. Blanc, A.D. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85(A4), 1669–1686 (1980). doi:10.1029/JA085iA04p01669

    Article  ADS  Google Scholar 

  • J.L. Burch, J. Goldstein, B.R. Sandel, Cause of plasmasphere corotation lag. Geophys. Res. Lett. 31, L05802 (2004). doi:10.1029/2003GL019164

    Article  ADS  Google Scholar 

  • R.W. Coley, R.A. Heelis, Low latitude zonal and vertical ion drifts seen by DE-2. J. Geophys. Res. 94, 6751–6761 (1989)

    Article  ADS  Google Scholar 

  • P.R. Fagundes, F.A. Cardoso, B.G. Fejer, K. Venkatesh, B.A.G. Ribeiro, V.G. Pillat, GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Weather 121 (2016). doi:10.1002/2015JA022214

  • O. Fambitakoye, M. Menvielle, C. Mazaudier, Global disturbance of the transient magnetic field associated with thermospheric storm winds on March 23, 1979. J. Geophys. Res. 95, 15209–15218 (1990). doi:10.1029/JA095iA09p15209

    Article  ADS  Google Scholar 

  • I. Fathy, C. Amory-Mazaudier, A. Fathy, A.M. Mahrous, K. Yumoto, E. Ghamry, Ionospheric disturbance dynamo associated to a coronal hole: case study of 5–10 April 2010. J. Geophys. Res. Space Phys. 119, 4120–4133 (2014). doi:10.1002/2013JA019510

    Article  ADS  Google Scholar 

  • B.G. Fejer, The electrodynamics of the low latitude ionosphere: recent results and future challenges. J. Atmos. Sol.-Terr. Phys. 59, 1456–1482 (1997). doi:10.1016/s1364-6826(96)00149-6

    Article  ADS  Google Scholar 

  • B.G. Fejer, Low latitude storm time ionospheric electrodynamics. J. Atmos. Sol.-Terr. Phys. 64, 1401–1408 (2002)

    Article  ADS  Google Scholar 

  • B.G. Fejer, Low latitude ionospheric electrodynamics. Space Sci. Rev. 158(1), 145–166 (2011). doi:10.1007/s11214-010-9690-7

    Article  ADS  Google Scholar 

  • B.G. Fejer, L. Scherliess, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res. Lett. 22, 851–854 (1995). doi:10.1029/95GL00390

    Article  ADS  Google Scholar 

  • B.G. Fejer, L. Scherliess, Empirical models of storm time equatorial zonal plasma drifts. J. Geophys. Res. 102(A11), 24047–24056 (1997). doi:10.1029/97JA02164

    Article  ADS  Google Scholar 

  • B.G. Fejer, J.T. Emmert, Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. J. Geophys. Res. 182(A12), 1454 (2003). doi:10.1029/2003JA010190

    Article  Google Scholar 

  • B.G. Fejer, M.F. Larsen, D.T. Farley, Equatorial disturbance dynamo electric fields. Geophys. Res. Lett. 10, 537–540 (1983)

    Article  ADS  Google Scholar 

  • B.G. Fejer, R.W. Spiro, R.A. Wolf, J.C. Foster, Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results. Ann. Geophys. 8(6), 441–454 (1990)

    ADS  Google Scholar 

  • B.G. Fejer, E.R. de Paula, S.A. Gonzalez, R.F. Woodman, Average vertical and zonal \(F\) region plasma drifts over Jicamarca. J. Geophys. Res. 96(A8), 13901–13906 (1991). doi:10.1029/91A01171

    Article  ADS  Google Scholar 

  • B.G. Fejer, J.R. Souza, A.S. Santos, A.E.C. Perreira, Climatology of \(F\) region zonal drifts over Jicamarca. J. Geophys. Res. 110, A12310 (2005). doi:10.1029/2005JA011324

    Article  ADS  Google Scholar 

  • B.G. Fejer, J.W. Jensen, T. Kikuchi, M.A. Abdu, J.L. Chau, Equatorial ionospheric electric fields during the November 2004 magnetic storm. J. Geophys. Res. 112, A10 (2007). doi:10.1029/2007JA012376

    Article  Google Scholar 

  • B.G. Fejer, J.W. Jensen, S.-Y. Su, Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 35, L20106 (2008). doi:10.1029/GL2008035584

    Article  ADS  Google Scholar 

  • J.C. Foster, J.M. Holt, R.G. Musgrove, D.S. Evans, Solar wind dependencies of high-latitude convection and precipitation, in Solar Wind Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Sci., Tokyo, 1986), pp. 477–494

    Chapter  Google Scholar 

  • J.C. Foster, P.J. Erickson, A.J. Coster, J. Goldstein, F.J. Rich, Ionospheric signature of plasmaspheric tails. Geophys. Res. Lett. 29(13), 1623–1626 (2002). doi:10.1029/GL015067

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, G.H. Millward, A.D. Richmond, M.V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64, 1383–1391 (2002)

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, A.D. Richmond, N. Maruyama, Global modeling of storm-time thermospheric dynamics and electrodynamics, in Midlatitude Ionospheric Dynamics and Disturbances, ed. by P.M. Kintner Jr., A.J. Coster, T. Fuller-Rowell, A.J. Mannucci, M. Mendillo, R. Heelis. Am. Geophys. Union Geophysical Monograph, vol. 181 (2008), pp. 187–200

    Chapter  Google Scholar 

  • C.A. Gonzales, M.C. Kelley, B.G. Fejer, J.F. Vickrey, R.F. Woodman, Equatorial electric fields during geomagnetically disturbed conditions: implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. 84, 5803–5812 (1979)

    Article  ADS  Google Scholar 

  • R.A. Heelis, W.R. Coley, East-West ion drifts at mid-latitudes observed by dynamics explorer-2. J. Geophys. Res. 97, 19461–19469 (1992)

    Article  ADS  Google Scholar 

  • C.M. Huang, Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 118, 496–501 (2013). doi:10.1029/2012JA018118

    Article  ADS  Google Scholar 

  • C.M. Huang, M.Q. Chen, Formation of maximum electric potential at the geomagnetic equator by the disturbance dynamo. J. Geophys. Res. 113, A03301 (2008). doi:10.1029/2007JA012843

    ADS  Google Scholar 

  • C.M. Huang, A.D. Richmond, M.-Q. Chen, Theoretical effects of geomagnetic activity on low latitude electric fields. J. Geophys. Res. 110, A5 (2005). doi:10.1029/2004JA010994

    Article  Google Scholar 

  • C.S. Huang, Equatorial ionospheric electrodynamics associated with high-speed solar wind streams during January–April 2007. J. Geophys. Res. 117, A10311 (2012). doi:10.1029/2012JA017930

    Article  ADS  Google Scholar 

  • C.S. Huang, Storm-to-storm main phase repeatability of the local time variation of disturbed low-latitude vertical ion drifts. Geophys. Res. Lett. 42, 5694–5701 (2015). doi:10.1002/2015GL064674

    Article  ADS  Google Scholar 

  • C.S. Huang, S. Sazykin, J.L. Chau, N. Maruyama, M.C. Kelley, Penetration of electric fields: efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 69 (2007). doi:10.1016/j/jastp.2006.08.06

  • C.S. Huang, F.J. Rich, W.J. Burke, Storm-time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. 115, A08313 (2010). doi:10.1029/2009JA015150

    ADS  Google Scholar 

  • B. Kakad, D. Tiwari, T.K. Pant, Study of disturbance dynamo effects at nighttime equatorial F region in Indian longitude. J. Geophys. Res. 116, A12318 (2011). doi:10.1929/2011JA016626

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics (Academic Press, San Diego, 1988)

    Google Scholar 

  • M.C. Kelley, B.G. Fejer, C.A. Gonzales, An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6, 301–306 (1979). doi:10.10129/GL006i004p00301

    Article  ADS  Google Scholar 

  • T. Kikuchi, K. Hashimoto, K. Nozaki, Penetration electric fields to the equator during a geomagnetic storm. J. Geophys. Res. 113, A06214 (2008). doi:10.1029/2007JA012628

    Article  ADS  Google Scholar 

  • M.V. Klimenko, V.V. Klimenko, Disturbance dynamo, prompt penetration electric field and overshielding in the Earth’s ionosphere during geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 90–91, 146–155 (2012). doi:10.1016/j.jastp.2012.02.018

    Article  Google Scholar 

  • V.V. Kumar, M.L. Parkinson, P.L. Dyson, On the temporal evolution of midlatitude F region disturbance drifts. J. Geophys. Res. 115, A08325 (2010). doi:10.1029/2009015229

    ADS  Google Scholar 

  • M. LeHuy, C. Amory-Mazaudier, Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: Ddyn. J. Geophys. Res. 110, A02312 (2005). doi:10.1029/2004JA01078

    Google Scholar 

  • J. Liu, L. Liu, T. Nakamura, B. Zhao, B. Ning, A. Yoshiwaka, A case of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm. J. Geophys. Res. 119, 7716–7731 (2014). doi:10.1002/2014JA020273

    Article  Google Scholar 

  • N. Maruyama, A.D. Richmond, T.J. Fuller-Rowell, M.V. Codrescu, S. Sazykin, F.R. Toffoletto, R.W. Spiro, G.H. Millward, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL023763

  • N. Maruyama, S. Sazykin, R.W. Spiro, D. Anderson, A. Anghel, R.A. Wolf, F.R. Toffoletto, T.J. Fuller-Rowell, M.V. Codrescu, A.D. Richmond, G.H. Millward, Modeling storm-time electrodynamics of the low-latitude ionosphere-thermosphere system: can long lasting disturbance electric fields be accounted for? J. Atmos. Sol.-Terr. Phys. 69 (2007). doi:10.1016/j.jastp.2006.08.020

  • N. Maruyama, T.J. Fuller-Rowell, M.V. Codrescu, D. Anderson, A.D. Richmond, A. Maute, S. Sazykin, F.R. Toffoletto, R.W. Spiro, R.A. Wolf, G.H. Millward, Modeling the storm time electrodynamics, in Aeronomy of the Earth’s Atmosphere and Ionosphere, ed. by M.A. Abdu, D. Pancheva, A. Bhattacharyya (Springer, Dordrecht, 2011), pp. 455–464

    Chapter  Google Scholar 

  • T. Maruyama, M. Nakamura, Conditions for intense ionospheric storms expanding to lower midlatitudes. J. Geophys. Res. 112, A05310 (2007). doi:10.1029/2006JA012226

    Article  ADS  Google Scholar 

  • S. Matsushita, Ionospheric variations associated with geomagnetic disturbances. J. Geomagn. Geoelectr. 5, 109–135 (1953)

    Article  Google Scholar 

  • C.A. Mazaudier, A.D. Richmond, D. Brinkman, On thermospheric winds produced by auroral heating during magnetic storms and associated dynamo electric fields. Ann. Geophys. 5A, 443–448 (1987)

    ADS  Google Scholar 

  • C.A. Mazaudier, S.V. Venkateswaran, Delayed ionospheric effects of the geomagnetic storm of March 22, 1979 studied by the sixth coordinated data analysis workshop (CDAW–6). Ann. Geophys. 8, 511–518 (1990)

    ADS  Google Scholar 

  • A.A. Namgaladze, Yu.U. Kore’kov, V.V. Klimenko, I.V. Karpov, V.A. Sorokin, V.A. Naumova, Numerical modeling of the thermosphere-ionosphere-protonosphere. J. Atmos. Terr. Phys. 53(11/12), 113–1124 (1998)

    Google Scholar 

  • A. Nishida, N. Iwasaki, T. Nagata, The origin of fluctuations in the equatorial electrojet: a new type of geomagnetic variation. Ann. Geophys. 22, 5549–5559 (1966)

    Google Scholar 

  • N.M. Pedatella, J.M. Forbes, Electrodynamic response of the ionosphere to high-speed solar wind streams. J. Geophys. Res. 116, A12310 (2011). doi:10.1029/2011JA017050

    Article  ADS  Google Scholar 

  • C. Peymirat, A.D. Richmond, B.A. Emery, R.G. Roble, A magnetosphere-thermosphere-ionosphere-electrodynamics general-circulation model. J. Geophys. Res. 103, 17467–17477 (1998)

    Article  ADS  Google Scholar 

  • C. Peymirat, A.D. Richmond, A.T. Kobea, Electrodynamic coupling of high and low latitudes: simulations of shielding/overshielding effects. J. Geophys. Res. 105, 22991 (2000). doi:10.1029/2000JA000057

    Article  ADS  Google Scholar 

  • C. Peymirat, A.D. Richmond, R.G. Roble, Neutral wind influence on the electrodynamic coupling between the ionosphere and magnetosphere. J. Geophys. Res. 107, A1 (2002). doi:10.1029/2001JA900106

    Article  Google Scholar 

  • R.G. Rastogi, The effect of geomagnetic activity on the F2 region over central Africa. J. Geophys. Res. 67, 1367–1374 (1962)

    Article  ADS  Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics, in Handbook of Atmospheric Electrodynamics, vol. 2, ed. by H. Volland (CRC Press, Boca Raton, 1995), pp. 249–290

    Google Scholar 

  • A.D. Richmond, S. Matsushita, Thermospheric response to a magnetic substorm. J. Geophys. Res. 80, 2839–2850 (1975)

    Article  ADS  Google Scholar 

  • A.D. Richmond, C. Peymirat, R.G. Roble, Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J. Geophys. Res. 118(A3), 1118 (2003). doi:10.1029/2002JA009758

    Article  Google Scholar 

  • J.H. Sastri, Equatorial electric fields of ionospheric disturbance dynamo origin. Ann. Geophys. 6, 635–642 (1998)

    ADS  Google Scholar 

  • L. Scherliess, B.G. Fejer, Storm-time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. 102, 24037–24046 (1997). doi:10.1029/97JA02165

    Article  ADS  Google Scholar 

  • L. Scherliess, B.G. Fejer, Satellite studies of mid- and low-latitude ionospheric disturbance zonal plasma drifts. Geophys. Res. Lett. 25, 1503–1506 (1998)

    Article  ADS  Google Scholar 

  • L. Scherliess, B.G. Fejer, J. Holt, L. Goncharenko, C. Amory-Mazaudier, M.J. Buonsanto, Radar studies of midlatitude ionospheric plasma drifts. J. Geophys. Res. 106(A2), 1771–1783 (2001)

    Article  ADS  Google Scholar 

  • C. Senior, M. Blanc, On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J. Geophys. Res. 89(A1), 261–284 (1984)

    Article  ADS  Google Scholar 

  • R.W. Spiro, R.A. Wolf, B.G. Fejer, Penetration of high-latitude electric field effects to low latitude during SUNDIAL 1984. Ann. Geophys. 6, 39–50 (1988)

    ADS  Google Scholar 

  • J. Testud, P. Amayenc, M. Blanc, Middle and low latitude effects of auroral disturbances from incoherent-scatter. J. Atmos. Terr. Phys. 37, 989–1009 (1975)

    Article  ADS  Google Scholar 

  • B. Veenadhari, S. Alex, T. Kikuchi, A. Shinbori, R. Singh, E. Chandrasekar, Penetration of magnetospheric electric fields to the equator and their effects on low latitude ionosphere during intense geomagnetic storms. J. Geophys. Res. 115, A3 (2010). doi:10.1029/2009JA014562

    Article  Google Scholar 

  • H. Volland, H.G. Mayr, Response of the thermospheric density to auroral heating during geomagnetic disturbances. J. Geophys. Res. 76, 3764–3776 (1971)

    Article  ADS  Google Scholar 

  • Y. Wei, M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, X. Yue, Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF \(Bz\). Geophys. Res. Lett. 35, L02102 (2008). doi:10.1029/2008GL032305

    ADS  Google Scholar 

  • Y. Wei, M. Hong, Z. Pu, Q.C. Zong, T. Nakai, X. Cao, J. Wang, S. Fu, L. Xie, J. Guo, X. Liu, Responses of the ionospheric electric field to a sheath region of iCME: a case study. J. Atmos. Sol.-Terr. Phys. 73, 123–129 (2011). doi:10.1016/j.jastp.2010.03.004

    Article  ADS  Google Scholar 

  • R.A. Wolf, The quasi-static (slow flow) region of the magnetosphere, in Solar Terrestrial Physics, ed. by R. Carovillano, J.M. Forbes, D. Reidel (1983), pp. 303–380

    Chapter  Google Scholar 

  • Y. Yamazaki, M.J. Kosch, The equatorial electrojet during geomagnetic storm and substorms. J. Geophys. Res. Space Phys. 120, 2276–2287 (2015). doi:10.1002/2014JA020773

    Article  ADS  Google Scholar 

  • K.Z. Zaka, A. Kobea, P. Assamoi, O.K. Obrou, V. Doumbia, K. Boka, B.J–P. Adohi, N.M. Mene, Latitudinal profile of the ionospheric disturbance dynamo magnetic signature; comparison with the DP2 magnetic disturbance. Ann. Geophys. 27, 3523–3536 (2009)

    Article  ADS  Google Scholar 

  • K.Z. Zaka, A. Kobea, V. Doumbia, A.D. Richmond, A. Maute, N.M. Mene, O.K. Obrou, P. Assamoi, K. Boka, B.J–P. Adohi, C. Armory-Mazaudier, Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: comparison with observations. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015417

  • Y. Zou, N. Nishitani, Study of mid-latitude ionospheric convection during quiet and disturbed periods using the SuperDARN Hokkaido radar. Adv. Space Res. 54, 473–480 (2014). doi:10.1016/j.asr.2014.01.011

    Article  ADS  Google Scholar 

  • C. Xiong, H. Lühr, B.G. Fejer, The response of the equatorial electrojet, vertical plasma drifts, and thermospheric zonal wind to enhanced solar wind input. J. Geophys. Res. Space Phys. 121 (2016). doi:10.1002/2015JA022133

Download references

Acknowledgements

The work at Utah State University was supported by the Aeronomy Program, Division of Atmospheric Sciences of the National Science Foundation through grant AGS-1068104. ADR was supported in part by NASA grants NNX13AD64G and NNX14AE08G. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Fejer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fejer, B.G., Blanc, M. & Richmond, A.D. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects. Space Sci Rev 206, 407–429 (2017). https://doi.org/10.1007/s11214-016-0320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0320-x

Keywords

Navigation