Skip to main content
Log in

Pansharpening Based on Intrinsic Image Decomposition

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

A fused image of high spatial and spectral resolutions can be obtained by fusing a panchromatic (PAN) image with a multi-spectral (MS) image. In this paper, a new image fusion method is proposed, based on an intrinsic image decomposition model which assumes that an image can be separated into two components: the reflectance and illumination components. In pansharpening, it is known that the PAN image is a good substitute for the illumination of the ideal high resolution MS image. Therefore, the reflectance of the low resolution MS image can be estimated with the MS image and the downsampled PAN image. Then, through combining the upsampled reflectance component with the high resolution illumination component (the original PAN image), the pansharpened high resolution MS image can be reconstructed. Experiments performed on three data sets captured by different satellite sensors demonstrate that the proposed method can obtain clear fused images without causing a serious spectral distortion. Furthermore, since the proposed method requires dot multiplication, division, downsampling, and upsampling operations to be performed only once, it can be implemented for a very fast performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.glcf.umiacs.umd.edu/data/

  2. http://www.geosage.com/highview/download.html

  3. http://www.math.ucla.edu/~wittman/pansharpening/

References

  1. Kempeneers, P., Sedano, F., Seebach, L., Strobl, P., & San-Miguel-Ayanz, J. (Dec. 2011). Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4977–4986.

    Article  Google Scholar 

  2. Dalponte, M., Bruzzone, L., & Gianelle, D. (May 2008). Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1416–1427.

    Article  Google Scholar 

  3. Sirguey, P., Mathieu, R., Arnaud, Y., Khan, M. M., & Chanussot, J. (Jan. 2008). Improving MODIS spatial resolution for snow mapping using wavelet fusion and ARSIS concept. IEEE Geoscience and Remote Sensing Letters, 5(1), 78–82.

    Article  Google Scholar 

  4. Liu, J. G. (2000). Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461–3472.

    Article  Google Scholar 

  5. Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., & Arbiol, R. (May 1999). Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1204–1211.

    Article  Google Scholar 

  6. Otazu, X., Gonzalez-Audicana, M., Fors, O., & Nunez, J. (Oct. 2005). Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing, 43(10), 2376–2385.

    Article  Google Scholar 

  7. Li, S., Kwok, J. T., & Wang, Y. (Jan. 2002). Using the discrete wavelet frame transform to merge landsat TM and SPOT panchromatic images. Information Fusion, 3(1), 17–23.

    Article  Google Scholar 

  8. Aiazzi, B., Alparone, L., Baronti, S., & Garzelli, A. (Oct. 2002). Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2300–2312.

    Article  Google Scholar 

  9. Mahyari, A. G., & Yazdi, M. (Jun. 2011). Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 1976–1985.

    Article  Google Scholar 

  10. Hu, J., & Li, S. (2011). Fusion of panchromatic and multispectral images using multiscale dual bilateral filter. In Proceedings of IEEE international conference on image processing, pp 1489–1492.

  11. Zheng, S., Shi, W., Liu, J., & Tian, J. (May 2008). Remote sensing image fusion using multiscale mapped LS-SVM. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1313–1322.

    Article  Google Scholar 

  12. Thomas, C., Ranchin, T., Wald, L., & Chanussot, J. (May 2008). Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1301–1312.

    Article  Google Scholar 

  13. Lee, J., & Lee, C. (Jan. 2010). Fast and efficient panchromatic sharpening. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 155–163.

    Article  Google Scholar 

  14. Zhou, Z., Peng, S., Wang, B., Hao, Z., & Chen, S. (Jul. 2012). An optimized approach for ansharpening very high resolution multispectral images. IEEE Geoscience and Remote Sensing Letters, 9(4), 735–739.

    Article  Google Scholar 

  15. Joshi, M. V., Bruzzone, L., & Chaudhuri, S. (Sep. 2006). A model-based approach to multiresolution fusion in remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2549–2562.

    Article  Google Scholar 

  16. Li, S., & Yang, B. (Feb. 2011). A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 738–746.

    Article  Google Scholar 

  17. Li, S., Yin, H., & Fang, L. (Sep. 2013). Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Transactions on Geoscience and Remote Sensing, 51(9), 4779–4789.

    Article  Google Scholar 

  18. Zhu, X., & Bamler, R. (May 2013). A sparse image fusion algorithm with application to pan-sharpening. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2827–2836.

    Article  Google Scholar 

  19. Jiang, C., Zhang, H., Shen, H., & Zhang, L. (Jul. 2012). A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 9(4), 629–633.

    Article  Google Scholar 

  20. Joshi, M., & Jalobeanu, A. (Mar. 2010). MAP estimation for multiresolution fusion in remotely sensed images using an IGMRF prior model. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1245–1255.

    Article  Google Scholar 

  21. Zhang, L., Shen, H., Gong, W., & Zhang, H. (Dec. 2012). Adjustable model-based fusion method for multispectral and panchromatic images. IEEE Transactions on Systems, Man and Cybernetics. Part B Cybernetics, 42(6), 1693–1704.

    Article  Google Scholar 

  22. Yacoob, Y., & Davis, L. S. (Jul. 2009). Segmentation using appearance of mesostruc-ture roughness. International Journal of Computer Vision, 83(3), 248–273.

    Article  Google Scholar 

  23. Shen, J., Yang, X., Li, X., & Jia, Y. (Mar. 2013). Intrinsic image decomposition using optimization and user scribbles. IEEE Transactions on Cybernetics, 43(2), 425–436.

    Article  Google Scholar 

  24. Barron, J. & Malik, J. (May 2013). Shape, illumination, and reflectance from shading. Technical Report UCB/EECS-2013-117, EECS Department, University of California, Berkeley.

  25. Hanson, A., & Riseman, E. (1978). Computer vision systems. New York: Academic Press.

    Google Scholar 

  26. Tappen, M. F., Freeman, W. T., & Adelson, E. H. (Sep. 2005). Recovering intrinsic images from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1459–1472.

    Article  Google Scholar 

  27. Bousseau, A., Paris, S., & Durand, F. (Dec. 2009). User-assisted intrinsic images. ACM Transactions on Graphics, 28(5), 130:1–130:10.

    Article  Google Scholar 

  28. Liu, X., Wan, L., Qu, Y., Wong, T., Lin, S., Leung, C., et al. (Dec. 2008). Intrinsic colorization. ACM Transactions on Graphics, 27(5), 152:1–152:9.

    Article  Google Scholar 

  29. Carper, W. J., Lillesand, T. M., & Kiefer, R. W. (1990). The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data. Photogrammetric Engineering Remote Sensing, 56, 459–467.

    Google Scholar 

  30. Shah, V. P., Younan, N. H., & King, R. L. (May 2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335.

    Article  Google Scholar 

  31. Nikolakopoulos, Konstantinos G. (2008). Comparison of nine fusion techniques for very high resolution data. Photogrammetric Engineering Remote Sensing, 74(5), 647.

    Article  Google Scholar 

  32. Keys, R. (Dec. 1981). Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech and Signal Processing, 29(6), 1153–1160.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., & Wittman, T. (Oct. 2010). An adaptive IHS pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 7(4), 746–750.

    Article  Google Scholar 

  34. Choi, J., Yu, K., & Kim, Y. (Jan. 2011). A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 295–309.

    Article  Google Scholar 

  35. Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. M. (Oct. 2007). Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3012–3021.

    Article  Google Scholar 

  36. Luo, B., Khan, M. M., Bienvenu, T., Chanussot, J., & Zhang, L. (Jan. 2013). Decision-based fusion for pansharpening of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 10(1), 19–23.

    Article  Google Scholar 

  37. Alparone, L., Baronti, S., Garzelli, A., & Nencini, F. (Oct. 2004). A global quality measurement of pan-sharpened multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 1(4), 313–317.

    Article  Google Scholar 

  38. Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., & Selva, M. (Feb. 2008). Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering Remote Sensing, 74(2), 193–200.

    Article  Google Scholar 

  39. Wang, Z., & Bovik, A. C. (Mar. 2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Rahmani and J. Choi for providing the software of the Brovey, AIHS, and CSPR methods. This paper was supported in part by the National Natural Science Foundation for Distinguished Young Scholars of China under Grant No. 61325007, the National Natural Science Foundation of China under Grant No. 61172161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Li.

Additional information

This article is part of the Topical Collection on Hybrid Imaging and Image Fusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Li, S., Fang, L. et al. Pansharpening Based on Intrinsic Image Decomposition. Sens Imaging 15, 94 (2014). https://doi.org/10.1007/s11220-014-0094-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-014-0094-8

Keywords

Navigation