Skip to main content

Advertisement

Log in

Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis

  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \(\upmu{\text{V}}/{\text{e}}^{ - }\) and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loudin, J. D., Cogan, S. F., Mathieson, K., Sher, A., & Palanker, D. V. (2011). Photodiode circuits for retinal prostheses. IEEE Transactions on Biomedical Circuits and Systems, 5(5), 468–480.

    Article  Google Scholar 

  2. Wang, L., Mathieson, K., Kamins, T. I., Loudin, J. D., Galambos, L., Goetz, G., et al. (2012). Photovoltaic retinal prosthesis: implant fabrication and performance. Journal of Neural Engineering, 9(4), 046014.

    Article  Google Scholar 

  3. Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins, T. I., et al. (2012). Photovoltaic retinal prosthesis with high pixel density. Nature Photonics, 6(6), 391–397.

    Article  Google Scholar 

  4. Chen, K., Lo, Y.-K., Yang, Z., Weiland, J. D., Humayun, M. S., & Liu, W. (2013). A system verification platform for high-density epiretinal prostheses. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 326–337.

    Article  Google Scholar 

  5. Tran, N., Bai, S., Yang, J., Chun, H., Kavehei, O., Yang, Y., et al. (2014). A complete 256-electrode retinal prosthesis chip. IEEE Journal of Solid-State Circuits, 49(3), 751–765.

    Article  Google Scholar 

  6. Ghormishi, M. H., & Karami, M. A. (2015). Design and optimization of backside illuminated image sensor for epiretinal implants. Computers and Electrical Engineering, 45, 352–358.

    Article  Google Scholar 

  7. Furumiya, M., Ohkubo, H., Muramatsu, Y., Kurosawa, S., Okamoto, F., Fujimoto, Y., et al. (2001). High-sensitivity and no-crosstalk pixel technology for embedded CMOS image sensor. IEEE Transactions on Electron Devices, 48(10), 2221–2227.

    Article  Google Scholar 

  8. Ay, S. U. (2011). A CMOS energy harvesting and imaging (EHI) active pixel sensor (APS) imager for retinal prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 535–545.

    Article  Google Scholar 

  9. Cevik, I., & Ay, S. U. (2015). An ultra-low power energy harvesting and imaging (EHI) type CMOS APS imager with self-power capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(9), 2177–2186.

    Article  Google Scholar 

  10. Cevik, I., Huang, X., Yu, H., Yan, M., & Ay, S. U. (2015). An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability. Sensors, 15(3), 5531–5554.

    Article  Google Scholar 

  11. Law, M. K., Bermak, A., & Shi, C. (2011). A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(2), 80–84.

    Article  Google Scholar 

  12. Tang, F., & Bermak, A. (2012). An 84 pW/Frame per pixel current-mode CMOS image sensor with energy harvesting capability. IEEE Sensors Journal, 12(4), 720–726.

    Article  Google Scholar 

  13. Fish, A., Hamami, S., & Yadid-Pecht, O. (2006). CMOS image sensors with self-powered generation capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1210–1214.

    Article  Google Scholar 

  14. Kyung, C.-M. (2016). Theory and applications of smart cameras. Berlin: Springer.

    Book  Google Scholar 

  15. Darmont, A., & Society of Photo-optical Instrumentation Engineers. (2012). High dynamic range imaging: Sensors and architectures. SPIE.

  16. Beecken, B., & Fossum, E. (1996). Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays. Applied Optics, 35(19), 3471–3477.

    Article  Google Scholar 

  17. Loukianova, N. V., Folkerts, H. O., Maas, J. P., Verbugt, D. W., Mierop, A. J., Hoekstra, W., et al. (2003). Leakage current modeling of test structures for characterization of dark current in CMOS image sensors. IEEE Transactions on Electron Devices, 50(1), 77–83.

    Article  Google Scholar 

  18. Atlas, D. S. (2005). Atlas user’s manual. Santa Clara, CA: Silvaco International Software.

    Google Scholar 

  19. Ay, S. U. (2005). Electrical property modelling of photodiode type CMOS active pixel sensor (APS). In 48th Midwest symposium on circuits and systems, 2005 (pp. 371–375). IEEE.

  20. El Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine, 21(3), 6–20.

    Article  Google Scholar 

  21. Mesgarani, A., Alam, M. N., Nelson, F. Z., & Ay, S. U. (2010). Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS. In 2010 53rd IEEE international midwest symposium on circuits and systems, 2010 (pp. 893–896). IEEE.

  22. Ay, S. U. (2011). Boosted readout for CMOS APS pixels. In 2011 IEEE international symposium of circuits and systems (ISCAS), 2011 (pp. 2205–2208). IEEE.

  23. Ay, S. U. (2013). Boosted CMOS APS pixel readout for ultra low-voltage and low-power operation. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(6), 341–345.

    Article  Google Scholar 

  24. Belbachir, A. N. (2010). Smart cameras (Vol. 2). Berlin: Springer.

    Book  Google Scholar 

  25. Mendis, S. K., Kemeny, S. E., & Fossum, E. R. (1993). A 128/spl times/128 CMOS active pixel image sensor for highly integrated imaging systems. In Electron devices meeting, 1993. IEDM’93. Technical Digest., International (pp. 583–586). IEEE.

Download references

Acknowledgements

Funding was provided by Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Ansaripour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansaripour, I., Karami, M.A. Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis. Sens Imaging 18, 18 (2017). https://doi.org/10.1007/s11220-017-0171-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-017-0171-x

Keywords

Navigation