Skip to main content
Log in

Data-driven Kriging models based on FANOVA-decomposition

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Kriging models have been widely used in computer experiments for the analysis of time-consuming computer codes. Based on kernels, they are flexible and can be tuned to many situations. In this paper, we construct kernels that reproduce the computer code complexity by mimicking its interaction structure. While the standard tensor-product kernel implicitly assumes that all interactions are active, the new kernels are suited for a general interaction structure, and will take advantage of the absence of interaction between some inputs. The methodology is twofold. First, the interaction structure is estimated from the data, using a first initial standard Kriging model, and represented by a so-called FANOVA graph. New FANOVA-based sensitivity indices are introduced to detect active interactions. Then this graph is used to derive the form of the kernel, and the corresponding Kriging model is estimated by maximum likelihood. The performance of the overall procedure is illustrated by several 3-dimensional and 6-dimensional simulated and real examples. A substantial improvement is observed when the computer code has a relatively high level of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach, F.: High-dimensional non-linear variable selection through hierarchical kernel learning. Technical report (2009). http://arxiv.org/abs/0909.0844

  • Cressie, N.: Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1993)

    Google Scholar 

  • Diestel, R.: Graph Theory. Springen, New York (2000)

    Google Scholar 

  • Durrande, N., Ginsbourger, D., Roustant, O.: Additive kernels for high-dimensional Gaussian process modeling. Technical report (2010). http://hal.archives-ouvertes.fr/hal-00446520/en/

  • Edwards, D.: Introduction to Graphical Modelling, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Computer Science and Data Analysis Series. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  • Goesling, M., Kracker, H., Brosius, A., Kuhnt, S., Tekkaya, A.: Simulation und kompensation rueckfederungsbedingter formabweichungen. In: Tillmann, W. (ed.) SFB 708–3 oeffentliches Kolloquium, pp. 155–170. Praxiswissen, Dortmund (2009)

    Google Scholar 

  • Joseph, Hung Y. V, Sudjianto, A.: Blind kriging: A new method for developing metamodels. J. Mech. Des. 130(3), 031,102 (2008) (8 pages)

    Article  Google Scholar 

  • Krige, D.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  • Marrel, A., Iooss, B., Van Dorpe, F., Volkova, E.: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal. 52(10), 4731–4744 (2008)

    Article  MATH  Google Scholar 

  • Martin, J., Simpson, T.: Use of kriging models to approximate deterministic computer models. AIAA J. 43(4), 853–863 (2005)

    Article  Google Scholar 

  • Matheron, G.: Les cahiers du centre de morphologie mathématique de fontainebleau. Tech. Rep. 1, Ecole Nationale Supérieure des Mines de Paris (1969)

  • Park, J., Baek, J.: Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram. Comput. Geosci. 27, 1–7 (2001)

    Article  Google Scholar 

  • Plate, T.: Accuracy versus interpretability in flexible modeling: implementing a tradeoff using Gaussian process models. Behaviourmetrika 26(1), 29–50 (1999). Special issue on Analysis of knowledge representations in neural network (NN) models

    Article  Google Scholar 

  • R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010), http://www.R-project.org/, ISBN 3-900051-07-0

    Google Scholar 

  • Rasmussen, C., Williams, C.: Gaussian processes for machine learning. Adaptive Computation and Machine Learning. MIT, Cambridge (2006)

    Google Scholar 

  • Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Technical report (2010). http://hal.archives-ouvertes.fr/hal-00495766/fr/

  • Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli, A., Chan, K.: A quantitative, model independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)

    Article  Google Scholar 

  • Saltelli, A., Chan, K., Scott, E.: Sensitivity Analysis. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  • Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003)

    MATH  Google Scholar 

  • Sobol’, I.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)

    MathSciNet  Google Scholar 

  • Stein, M.: Interpolation of Spatial Data, Some Theory for Kriging. Springer Series in Statistics. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting and computer experiments. Technometrics 34, 15–25 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Muehlenstaedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muehlenstaedt, T., Roustant, O., Carraro, L. et al. Data-driven Kriging models based on FANOVA-decomposition. Stat Comput 22, 723–738 (2012). https://doi.org/10.1007/s11222-011-9259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9259-7

Keywords

Navigation