Skip to main content
Log in

Annealing Heat Treatment Effect on the Residual Stresses in Hot-Extruded Aluminum Alloy Rods with High Cross-Sectional Reduction

  • Published:
Strength of Materials Aims and scope

In this study, residual stresses in hot-extruded Al-6061 rods with different cross-sectional reduction were investigated using the contour method. The contour method was used to provide a twodimensional map of residual stresses. The residual stresses were evaluated along the radius of the rods with different cross-sectional reduction before and after annealing heat treatment, and the uncertainty of the contour method was estimated. The results indicate that in the extruded rods with high reduction of diameter, tensile residual stresses are generated in the rod core, which are balanced along the rod radius by compressive residual stresses at the surface. A decrease in the cross-sectional reduction or the rod diameter increase results in rise of residual stresses. The annealing heat treatment reduces residual stresses and creates a symmetrical balance between tensile and compressive residual stresses. The countour method application revealed that maximum and minimum uncertainties occurred at the rod center and perimeter, while the latter one had a greater effect on the residual stress estimation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. S. Kalpakjian and S. R. Schmid, Manufacturing Engineering and Technology, Pearson Education (2009).

  2. J. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International (1993).

  3. A. Jäger, M. Heilmann, W. Z. Misiolek, et al., “Influence of cooling rate on distortion and microstructure in extrusion of Al-Mg-Si alloys,” Int. J. Mater. Form., 2, 81 (2009), https://doi.org/10.1007/s12289-009-0451-7.

  4. S. Bikass, B. Andersson, and A. Pilipenko, “Simulation of distortion due to nonuniform cooling in aluminium extrusion process,” Int. J. Mater. Form., 3, 813–816 (2010), https://doi.org/10.1007/s12289-010-0894-x.

    Article  Google Scholar 

  5. M. Sedighi and M. Honarpisheh, “Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer,” Mater. Design, 37, 577–581 (2012).

    Article  CAS  Google Scholar 

  6. M. Sedighi and M. Honarpisheh, “Investigation of cold rolling influence on near surface residual stress distribution in explosive welded multilayer,” Strength Mater., 44, No. 6, 693–698 (2012).

    Article  CAS  Google Scholar 

  7. M. Kotobi and M. Honarpisheh, “Uncertainty analysis of residual stresses measured by slitting method in equal-channel angular rolled Al-1060 strips,” J. Strain Anal. Eng., 52, No. 2, 83–92 (2017).

    Article  Google Scholar 

  8. M. Kotobi and M. Honarpisheh, “Experimental and numerical investigation of through-thickness residual stress of laser-bent Ti specimens,” J. Strain Anal. Eng., 52, No. 6, 347–355 (2017).

    Article  Google Scholar 

  9. M. Honarpisheh, E. Haghighat, and M. Kotobi, “Investigation of residual stress and mechanical properties of equal channel angular rolled St12 strips,” P. I. Mech. Eng. L-J. Mat., 232, No. 10, 841–851 (2018).

  10. M. Kotobi and M. Honarpisheh, “Through-depth residual stress measurement of laser bent steel–titanium bimetal sheets,” J. Strain Anal. Eng., 53, No. 3, 130–140 (2018).

    Article  Google Scholar 

  11. S. Keil, “Experimental determination of residual stresses with the ring-core method and an on-line measuring system,” Exp. Techniques, 16, No. 5, 17–24 (1992).

    Article  Google Scholar 

  12. E. J. Kingston, D. Stefanescu, A. H. Mahmoudi, et al., “Novel applications of the deep-hole drilling technique for measuring through-thickness residual stress distributions,” J. ASTM Int., 3, No. 4, 1–12 (2006).

    Article  Google Scholar 

  13. I. Alinaghian, M. Honarpisheh, and S. Amini, “The influence of bending mode ultrasonic-assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and macrostructure,” Int. J. Adv. Manuf. Technol., 95, 2757–2766 (2018).

    Article  Google Scholar 

  14. R. McMeeking and E. Lee, “The generation of residual stresses in metal-forming processes,” in: E. Kula and V. Weiss (Eds.), Residual Stress and Stress Relaxation, Springer Science+Business Media, New York (1982), pp. 315–329.

    Chapter  Google Scholar 

  15. A. Pyzalla and W. Reimers, “Residual stress and texture due to cold and hot extrusion processes,” Texture, Stress, and Microstructure, 33, 291–301 (1999).

    Article  CAS  Google Scholar 

  16. L. Chuan and C.-L. Dong, “Internal residual stress measurement on linear friction welding of titanium alloy plates with contour method,” T. Nonferr. Metal. Soc., 24, No. 5, 1387–1392 (2014).

    Article  Google Scholar 

  17. M. B. Prime, “Cross-sectional mapping of residual stresses by measuring the surface contour after a cut,” J. Eng. Mater. Technol., 123, No. 2, 162–168 (2001).

    Article  Google Scholar 

  18. Y. Li, Y. X. Wu, H. Gong, and F. Xiao, “FEM and contour method study of quenching residual stress of 7050 aluminum alloy cross-shaped component,” Mater. Sci. Forum, 887, 89–95 (2017), https://doi.org/10.4028/www.scientific.net/msf.887.89.

    Article  Google Scholar 

  19. M. Moazam and M. Honarpisheh, “Residual stress formation and distribution due to precipitation hardening and stress relieving of AA7075,” Mater. Res. Express, 6, No. 12, 126108 (2019), https://doi.org/10.1088/2053-1591/ab59b6.

  20. Y. Zhang, S. Ganguly, L. Edwards, and M. Fitzpatrick, “Cross-sectional mapping of residual stresses in a VPPA weld using the contour method,” Acta Mater., 52, No. 17, 5225–5232 (2004).

    Article  CAS  Google Scholar 

  21. P. Withers, M. Turski, L. Edwards, et al., “Recent advances in residual stress measurement,” Int. J. Pres. Ves. Pip., 85, No. 3, 118–127 (2008).

    Article  CAS  Google Scholar 

  22. D. Thibault, P. Bocher, M. Thomas, et al., “Residual stress characterization in low transformation temperature 13% Cr–4% Ni stainless steel weld by neutron diffraction and the contour method,” Mater. Sci. Eng. A, 527, No. 23, 6205–6210 (2010).

    Article  Google Scholar 

  23. N. Murugan and R. Narayanan, “Finite element simulation of residual stresses and their measurement by contour method,” Mater. Design, 30, No. 6, 2067–2071 (2009).

    Article  CAS  Google Scholar 

  24. D. Thibault, P. Bocher, and M. Thomas, “Residual stress and microstructure in welds of 13% Cr–4% Ni martensitic stainless steel,” J. Mater. Process. Tech., 209, No. 4, 2195–2202 (2009).

    Article  CAS  Google Scholar 

  25. M. Turski and L. Edwards, “Residual stress measurement of a 316l stainless steel bead-on-plate specimen utilising the contour method,” Int. J. Pres. Ves. Pip., 86, No. 1, 126–131 (2009).

    Article  CAS  Google Scholar 

  26. D. Brown, T. Holden, B. Clausen, et al., “Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: neutron diffraction and the contour method”, Acta Mater., 59, No. 3, 864–873 (2011).

    Article  CAS  Google Scholar 

  27. F. Hosseinzadeh, P. Ledgard, and P. Bouchard, “Controlling the cut in contour residual stress measurements of electron beam welded Ti-6Al-4V alloy plates,” Exp. Mech., 53, No. 5, 829–839 (2013).

    Article  Google Scholar 

  28. V. Richter-Trummer and P. De Castro, “The through-the-thickness measurement of residual stress in a thick welded steel compact tension specimen by the contour method,” J. Strain Anal. Eng., 46, No. 4, 315–322 (2011).

    Article  Google Scholar 

  29. D. F. Braga, H. E. Coules, T. Pirling, et al., “Assessment of residual stress of welded structural steel plates with or without post weld rolling using the contour method and neutron diffraction,” J. Mater. Process. Tech., 213, No. 12, 2323–2328 (2013).

    Article  CAS  Google Scholar 

  30. A. T. DeWald, D. Legzdina, B. Clausen, et al., “A comparison of residual stress measurements on a linear friction weld using the contour method and neutron diffraction,” in: C. Ventura, W. Crone, and C. Furlong (Eds.), Experimental and Applied Mechanics, Volume 4, Springer (2013), pp. 183–189.

  31. V. Richter-Trummer, E. Suzano, M. Beltrão, et al., “Influence of the FSW clamping force on the final distortion and residual stress field,” Mater. Sci. Eng. A, 538, 81–88 (2012).

    Article  CAS  Google Scholar 

  32. C. Liu and X. Yi, “Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method,” Mater. Design, 46, 366–371 (2013).

    Article  CAS  Google Scholar 

  33. W. Woo, G. An, V. Em, et al., “Through-thickness distributions of residual stresses in an 80 mm thick weld using neutron diffraction and contour method,” J. Mater. Sci., 50, No. 2, 784–793 (2015).

    Article  CAS  Google Scholar 

  34. P. Frankel, P. Withers, M. Preuss, et al., “Residual stress fields after FOD impact on flat and aerofoil-shaped leading edges,” Mech. Mater., 55, 130–145 (2012).

    Article  Google Scholar 

  35. Z. Zhang, L. Li, Y. Yang, et al., “Machining distortion minimization for the manufacturing of aeronautical structure,” Int. J. Adv. Manuf. Technol., 73, Nos. 9–12, 1765–1773 (2014).

  36. A. T. DeWald and M. R. Hill, “Eigenstrain-based model for prediction of laser peening residual stresses in arbitrary three-dimensional bodies. Part 2: Model verification,” J. Strain Anal. Eng., 44, No. 1, 13–27 (2009).

    Article  Google Scholar 

  37. S. D. Cuellar, M. R. Hill, A. T. DeWald, and J. E. Rankin, “Residual stress and fatigue life in laser shock peened open hole specimens,” Int. J. Fatigue, 44, 8–13 (2012).

    Article  CAS  Google Scholar 

  38. M. B. Toparli, M. E. Fitzpatrick, and S. Gungor, “Determination of multiple near-surface residual stress components in laser peened aluminum alloy via the contour method”, Metall. Mater. Trans. A, 46, No. 9, 4268–4275 (2015).

    Article  CAS  Google Scholar 

  39. B. Ahmad and M. E. Fitzpatrick, “Effect of ultrasonic peening and accelerated corrosion exposure on the residual stress distribution in welded marine steel,” Metall. Mater. Trans. A, 46, No. 3, 1214–1226 (2015).

    Article  CAS  Google Scholar 

  40. M. Achintha and B. A. Balan, “An experimentally validated contour method/ eigenstrains hybrid model to incorporate residual stresses in glass structural designs,” J. Strain Anal. Eng., 50, No. 8, 614–627 (2015).

    Article  Google Scholar 

  41. P. Rangaswamy, M. Griffith, M. Prime, et al., “Residual stresses in LENS® components using neutron diffraction and contour method,” Mater. Sci. Eng. A, 399, Nos. 1–2, 72–83 (2005).

  42. Z. Zhang, Y. Yang, L. Li, et al., “Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method,” Mater. Sci. Eng. A, 644, 61–68 (2015).

    Article  CAS  Google Scholar 

  43. R. Kaiser, M. Stefenelli, T. Hatzenbichler, et al., “Experimental characterization and modelling of triaxial residual stresses in straightened railway rails,” J. Strain Anal. Eng., 50, No. 3, 190–198 (2015).

    Article  Google Scholar 

  44. F. Nazari, M. Honarpisheh, and H. Zhao, “Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process,” Int. J. Adv. Manuf. Technol., 102, 4361–4370 (2019).

    Article  Google Scholar 

  45. F. Nazari, M. Honarpisheh, and H. Zhao, “The effect of microstructure parameters on the residual stresses in the ultrafine-grained sheets,” Micron, 132, 102843 (2020).

    Article  CAS  Google Scholar 

  46. M. B. Prime, R. J. Sebring, J. M. Edwards, et al., “Laser surface-contouring and spline data-smoothing for residual stress measurement,” Exp. Mech., 44, No. 2, 176–184 (2004).

    Article  Google Scholar 

  47. M. B. Prime, T. Gnäupel-Herold, J. A. Baumann, et al., “Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld,” Acta Mater., 54, No. 15, 4013–4021 (2006).

    Article  CAS  Google Scholar 

  48. B. Ahmad and M. E. Fitzpatrick, “Minimization and mitigation of wire EDM cutting errors in the application of the contour method of residual stress measurement,” Metall. Mater. Trans. A, 47, No. 1, 301–313 (2016).

    Article  CAS  Google Scholar 

  49. M. D. Olson, A. T. DeWald, M. B. Prime, and M. R. Hill, “Estimation of uncertainty for contour method residual stress measurements,” Exp. Mech., 55, No. 3, 577–585 (2015).

    Article  Google Scholar 

  50. M. Honarpisheh and F. Nazari, “Uncertainty analysis of contour method in the hot extruded aluminum specimens,” Modares Mech. Eng., 17, No. 5, 439–445 (2017).

    Google Scholar 

  51. M. Aghaei, F. Nazari, and M. Honarpisheh, “Effect of Cooling system on the mechanical properties and residual stress of steel AISI 1045 in quenching heat treatment,” Modares Mech. Eng., 19, No. 12, 2979-2986 (2019).

    Google Scholar 

  52. ASTM-B918/B918M-09. Standard Practice for Heat Treatment of Wrought Aluminum Alloys, ASTM International, West Conshohocken, PA (2009).

  53. W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Honarpisheh.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 128 – 141, March – April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honarpisheh, M., Nazari, F. & Haghighi, M.A. Annealing Heat Treatment Effect on the Residual Stresses in Hot-Extruded Aluminum Alloy Rods with High Cross-Sectional Reduction. Strength Mater 52, 291–302 (2020). https://doi.org/10.1007/s11223-020-00177-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00177-8

Keywords

Navigation