Skip to main content
Log in

Static and Dynamic Moduli of a Cold Recycled Emulsified Asphalt Mixture

  • Published:
Strength of Materials Aims and scope

The design of the pavement structure can make use of moduli to predict its performance during a preset lifetime. It is essential to study static and dynamic moduli characteristics. The static modulus was derived from the compression rebound modulus of the hot-mixed asphalt. The dynamic modulus was checked against a simple performance tester. The modulus of a cold recycled emulsified asphalt mixture was tested in a series of experiments on cement contents, emulsified asphalt contents, loading frequency, and temperature. The results show that high cement and asphalt contents resulted in a lower compression rebound modulus. The dynamic modulus maximum is reached at a 2% cement content. The dynamic modulus also increases with the loading frequency. This increase is observed during the early period. When the frequency increased to 10 Hz, an increase in the dynamic modulus becomes linear, and its rate gradually decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. Tabakoviã, L. Schuyffel, A. Karaè, and E. Schlangen, “An evaluation of the efficiency of compartmented alginate fibres encapsulating a rejuvenator as an asphalt pavement healing system,” Appl. Sci.-Basel, 7, No. 7, 647 (2017), https://doi.org/10.3390/app7070647.

    Article  CAS  Google Scholar 

  2. F. Gu, W. Y. Ma, R. C. West, et al., “Structural performance and sustainability assessment of cold central-plant and in-place recycled asphalt pavements: A case study,” J. Clean. Prod., 208, 1513–1523 (2019).

    Article  CAS  Google Scholar 

  3. J. P. Zhang, H. Q. Tan, J. Z. Pei, et al., “Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness,” Int. J. Geomech., 19, No. 4, 06019005 (2019).

    Article  Google Scholar 

  4. C. Sangiorgi, P. Tataranni, and A. Simone, “A laboratory and filed evaluation of cold recycled mixture for base layer entirely made with reclaimed asphalt pavement,” Constr. Build. Mater., 138, 232–239 (2017).

    Article  Google Scholar 

  5. M. Dal Ben and K. J. Jenkins, “Performance of cold recycling materials with foamed bitumen and increasing percentage of reclaimed asphalt pavement,” Road Mater. Pavement, 15, No. 2, 348–371 (2014).

    Article  CAS  Google Scholar 

  6. J. Li, J. H. Zhang, and G. P. Qian, “Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation,” J. Mater. Civil Eng., 31, No. 3, 04019004 (2019).

    Article  CAS  Google Scholar 

  7. J. Turk, A. M. Pranjiã, and A. Mladenoviè, “Environmental comparison of two alternative road pavement rehabilitation techniques: cold-in-place-recycling versus traditional reconstruction,” J. Clean. Prod., 121, 45–55 (2016).

    Article  Google Scholar 

  8. F. P. Xiao, S. L. Yao, and J. G. Wang, “A literature review on cold recycling technology of asphalt pavement,” Constr. Build. Mater., 180, 579–604 (2018).

    Article  Google Scholar 

  9. R. Issa, M. M. Zaman, G. A. Miller, and L. J. Senkowski, “Characteristics of cold processed asphalt millings and cement-emulsion mix,” Transp. Res. Record, 1767, 1–6 (2001).

    Article  CAS  Google Scholar 

  10. J. P. Zhang, X. Q. Liu, W. S. Ma, and J. Z. Pei, “Characterizing heterogeneity of asphalt mixture based on aggregate particles movements,” IJST-T. Civ. Eng., 43, No. 1, 81–91 (2019).

    Google Scholar 

  11. J. J. E. Liebenberg and A. T. Visser, “Towards a mechanistic structural design procedure for emulsiontreated base layers,” J. S. Afr. Inst. Civ. Eng., 46, No. 3, 2–9 (2004).

    Google Scholar 

  12. M. Zaumanis and R. B. Mallick, “Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art,” Int. J. Pavement Eng., 16, No. 1, 39–55 (2015).

    Article  CAS  Google Scholar 

  13. S. E. E. Khay, S. E. E. Ben Said, and A. Loulizi, “Laboratory investigation of cement-treated reclaimed asphalt pavement material,” J. Mater. Civil Eng., 27, No. 6, 04014192 (2015).

    Article  Google Scholar 

  14. J. P. Zhang, X. Q. Liu, and G. Q. Liu, “Effects of material characteristics on asphalt and filler interaction ability,” Int. J. Pavement Eng., 20, No. 8, 928–937 (2019).

    Article  Google Scholar 

  15. H. Sivilevièius, J. Braþiûnas, and O. Prentkovskis, “Technologies and principles of hot recycling and investigation of preheated reclaimed asphalt pavement batching process in an asphalt mixing plant,” Appl. Sci.-Basel, 7, No. 11, 1104 (2017), https://doi.org/10.3390/app7111104.

    Article  Google Scholar 

  16. F. C. Guo, J. P. Zhang, J. Z. Pei, et al., “Study on the mechanical properties of rubber asphalt by molecular dynamics simulation,” J. Mol. Model., 25, No. 12, 365 (2019).

    Article  CAS  Google Scholar 

  17. S. Zhao, J. Liu, and P. Li, “Dynamic modulus characterization of Alaskan asphalt mixtures for mechanisticempirical pavement design,” J. Mater. Civil Eng., 29, No. 11, 04017213 (2017).

    Article  Google Scholar 

  18. W. Liu, J. H. Yan, F. Li, et al., “Dynamic and static modulus correlation of emulsified asphalt cold recycled mixture,” J. Highway Transp. Res. Develop., 32, No. 5, 1–6 (2015).

    Google Scholar 

  19. G. L. Hu, W. Y. Han, and S. X. Yu, “Experimental investigation on the dynamic modulus of the emulsion asphalt cold recycling mixture,” Sci. Technol. Eng., 18, No. 4, 339–343 (2018).

    Google Scholar 

  20. JTG F41-2008. Technical Specifications for Highway Asphalt Pavement Recycling, Renmin Communication Press, Beijing (2008).

    Google Scholar 

  21. X. Y. Tan, J. P. Zhang, and D. Guo, “Preparation and repeated repairability evaluation of sunflower oil-type microencapsulated filling materials,” J. Nanosci. Nanotechno., 20, No. 3, 1554–1566 (2020).

    Article  CAS  Google Scholar 

  22. S. Lv, C. Liu, and H. Yao, “Comparisons of synchronous measurement methods on various moduli of asphalt mixtures,” Constr. Build. Mater., 158, 1035–1045 (2018).

    Article  Google Scholar 

  23. N. Solatifar, A. Kavussi, and M. Abbasghorbani, “Development of dynamic modulus master curves of in-service asphalt layers using MEPDG models,” Road Mater. Pavement, 20, No. 1, 225–243 (2019).

    Article  CAS  Google Scholar 

  24. JTG D50-2017. Specifications for Design of Highway Asphalt Pavement, Renmin Communication Press, Beijing (2017).

    Google Scholar 

  25. S. Hou, C. Chen, and J. Zhang, “Thermal and mechanical evaluations of asphalt emulsions and mixtures for microsurfacing,” Constr. Build. Mater., 191, 1221–1229 (2018).

    Article  Google Scholar 

  26. X. Sheng, M. Wang, and T. Xu, “Preparation, properties and modification mechanism of polyurethane modified emulsified asphalt,” Constr. Build. Mater., 189, 375–383 (2018).

    Article  CAS  Google Scholar 

  27. S. Lv, S. Wang, and C. Liu, “Synchronous testing method for tension and compression moduli of asphalt mixture under dynamic and static loading states,” J. Mater. Civil Eng., 30, No. 10, 04018268 (2018).

    Article  Google Scholar 

  28. S. Lv, X. Fan, C. Xia, et al., “Characteristics of moduli decay for the asphalt mixture under different loading conditions,” Appl. Sci.-Basel, 8, No. 5, 840 (2018), https://doi.org/10.3390/app8050840.

    Article  CAS  Google Scholar 

  29. X. Fan, S. Lv, N. Zhang, et al., “Characterization of asphalt mixture moduli under different stress states,” Materials, 12, No. 3, 397 (2019), https://doi.org/10.3390/ma12030397.

    Article  CAS  Google Scholar 

  30. K. Zhang, S. Shen, and J. Lim, “Development of dynamic modulus-based mixture blending chart for asphalt mixtures with reclaimed asphalt pavement,” J. Mater. Civil Eng., 31, No. 2, 04018382 (2019).

    Article  CAS  Google Scholar 

  31. J. P. Zhang, X. Q. Liu, and G. Q. Liu, “Effects of material characteristics on asphalt and filler interaction ability,” Int. J. Pavement Eng., 20, No. 8, 928–937 (2019).

    Article  Google Scholar 

  32. J. P. Zhang, Z. P. Fan, H. Wang, et al., “Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions,” Mater. Struct., 52, 49 (2019), https://doi.org/10.1617/s11527-019-1348-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Li.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 166 – 175, July – August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, Y.H., Li, G.C., Li, Z. et al. Static and Dynamic Moduli of a Cold Recycled Emulsified Asphalt Mixture. Strength Mater 52, 646–654 (2020). https://doi.org/10.1007/s11223-020-00215-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00215-5

Keywords

Navigation