Skip to main content
Log in

Interplay of Thermochemistry and Structural Chemistry, the Journal (Volume 13, 2002) and the Discipline

  • Review
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

As practiced disciplines, structural chemistry and thermochemistry need not be related. In the current study they are: the contents of the journal “Structural Chemistry” (Vol. 13) for the year 2002 have been reviewed and then most articles that appeared therein were given a thermochemical commentary, “spin” or “slant.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liebman, J. F.; Struct. Chem. 1903, 14, 299.

    Google Scholar 

  2. Liebman, J. F.; Struct. Chem. 2003, 14, 403.

    Google Scholar 

  3. Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L., J. Phys. Chem. Ref. Data. 1982, 11(Suppl. 2).

  4. Pedley, J. B.; Naylor, R. D.; Kirby, S. P., Thermochemical Data of Organic Compounds; Chapman and Hall: New York, 2nd ed., 1986.

    Google Scholar 

  5. Durig, J. R.; Jin, Y.; Pahn, H. V.; Liu, J.; Durig, D. T., Struct. Chem. 1902, 13, 1.

    Google Scholar 

  6. Cruickshank, F. R.; Benson, S. W., J. Am. Chem. Soc. 1969, 19, 2487.

    Google Scholar 

  7. Slayden, S. W.; Liebman, J. F.; Mallard, G. W., In The Chemistry of Functional Groups Supplement D2: The Chemistry of Organic Halides, Pseudohalides and Azides; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1995.

    Google Scholar 

  8. Castaldo, A.; Centore, R.; Sirizu, A.; Tuzi, A., Struct. Chem. 2002, 13, 27.

    Google Scholar 

  9. Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A., J. Chem. Thermodyn. 1992, 24, 449.

    Google Scholar 

  10. Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F., Eur. J. Org. Chem. 2004, 3340. Direct calorimetric and phase change enthalpy measurements resulted in an enthalpy of formation of gaseous anthranil of 180.8 ± 2.1 kJ/mol while a combined analysis from reaction calorimetry and quantum chemical calculations resulted in an enthalpy of formation of benz[d]isoxazole of 138.9± 4.3kJ/mol. Direct combustion calorimetry could not be applied to this latter species because of its instability and reluctant lack of sample purity.

  11. Hussein, A.; Akasheh, T. S., Dirasat--Univ. Jordan; 1985, 12, 65. More precisely, we have the enthalpy of formation of its diphenyl derivative, 203 ± 10 kJ/mol. From equating the difference of the diphenyl and parent heterocycles with that of p-terphenyl and benzene results in the quoted 7 ± 13 kJ/mol. Balepin, A. A.; Lebedev, V. P.; Miroshnichenko, E. A.; Koldobskii, G. I.; Ostovskii, V. A.; Larionov, B. P.; Gidaspov, B. P.; Lebedev, Yu. A., Svoistva Veshchestv. Str. Mol, 1977, 93. The value for terphenyl is 279 ± 6.3kJ/mol. The archival value for benzene is 82.6 ± 0.7 kJ/mol. Much the same is found using the generally applicable dephenylation enthalpy of ca. 97 kJ/mol suggested in Slayden, S.W., Liebman, J. F., Chem Rev.; 1901, 101, 541.

  12. Steele, W. V.; Chirico, R. D., Thermodynamics and the hydrodeoxygenation of 2,3-Benzofuran, (IIT Research Institute, NIPEP, Bartlesville, OK, Cooperative Agreement No. FC22-83FE60149 (NIPEP-457) 1990).

  13. Shen, L.; Liu, J.; Gu, J.; Hu, Z.; Xu, Y., Struct. Chem. 1902, 13, 37.

    Google Scholar 

  14. Bachechi, F.; Flieger, M.; Sinibaldi, M., Struct. Chem. 2002, 13, 41.

    Google Scholar 

  15. Schmidt, V. A.; Becker, F., Gesamte Schiess Sprengstoffwes. 1933, 33, 280.

    Google Scholar 

  16. Simirsky, V. V.; Kabo, G. J.; Frenkel, M. L., J. Chem. Thermodyn. 1987, 19, 1121.

    Google Scholar 

  17. Kkulagina, T. G.; Kiparisova, E. G.; Russ. J. Phys. Chem. 1987, 61, 261.

    Google Scholar 

  18. Medard, L.; Thomas, M., Mem. Poudres. 1952, 34, 421.

    Google Scholar 

  19. Taskinen, E., Struct. Chem. 1902, 13, 53.

    Google Scholar 

  20. Taskinen, E., Struct. Chem. 2002, 13, 61.

    Google Scholar 

  21. Rogers, D. W.; Pododensin, A.; Liebman, J. F., J. Org. Chem. 1993, 58, 2589.

    Google Scholar 

  22. Hosmane, R. S.; Liebman, J. F., Tetrahedron Lett. 1992, 33, 2303.

    Google Scholar 

  23. Matos, M. A. R.; Monte, M. J. S.; Sousa, C. C. S.; Almeida, A. R. R. P.; Morais, V. M. F., Org. Biomol. Chem. 1904, 2, 908. This reference studies 5-substituted benzodioxoles. The 〉CH2 group found in 1,3-dioxole and tropilidene is so special that we wonder about the results from a corresponding study of 2-substituted 1,3-dioxole and 1,3-benzodioxole.

  24. Skawinski, W. J.; Ofsievich, A.; Venanzi, C. A., Struct. Chem; 2002, 13, 81.

    Google Scholar 

  25. Afeefy, H. Y.; Slayden, S. W.; Liebman, J. F., In The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science; Greenberg, A.; Breneman, C. M.; Liebman, J. F., Eds.; Wiley: New York, 2000.

    Google Scholar 

  26. Slayden, S. W.; Liebman, J. F., In The Chemistry of Functional Groups Supplement A3: The Chemistry of Doubly-Bonded Functional Groups; Patai, S., Ed.; Wiley: Chichester, 1997.

    Google Scholar 

  27. Yates, N. D.; Peters, D. A.; Allway, P. A.; Bedoes, R. L.; Scopes, D. I. C.; and Joule, J. A., Heterocycles 1995, 40, 331.

    Google Scholar 

  28. Gudmundsdottir, A. D.; Liebman, J. F., Struct. Chem. (in press).

  29. Liebman, J. F., Struct. Chem. 1999, 10, 327. An example of a seemingly stabilized species with a –C(O)–N= moiety that shows such resonance stabilization, namely acyl azides, albeit far less than amides. Also see Roux, M. V.; Smith, P. J.; Liebman, J. F. Struct. Chem. (in press).

  30. Sayre, D., Struct. Chem. 2002, 13, 81.

    Google Scholar 

  31. Tsuzuki, T.; Harper, D. O.; Hunt, H., J. Phys. Chem. 1958, 62, 1594. This value is somewhat different from the 4 kcal/g normally associated with the caloric content of protein given by the nutritionally-minded scientist.

    Google Scholar 

  32. Cystine has been a popular species to study by calorimetrists. (a). Emery, A.; Benedict, F., Am. J. Physiol. 1911, 28, 301. (b). Becker, G.; Roth, W., Z. Phys. Chem. 1934, 169, 287. (c) Huffman, H.; Ellis, E., J. Am. Chem. Soc. 1935, 57, 41. (d) Sunner, S.; Svensk, K. Tidr. 1946, 58, 71. An additional interesting, so far unresolved, thermochemical question is how different are the enthalpies of formation of the chiral, racemic and meso diasterisomers.

  33. Sunner, S., op. cit. (Ref. 32 d).

  34. Alkorta, I.; Elguero, J., Struct. Chem. 2002, 13, 97.

    Google Scholar 

  35. Leszczyáski, J., Struct. Chem. 1902, 13, 103.

    Google Scholar 

  36. Politzer, P., Boyd, S. Struct. Chem. 2002, 13, 105.

    Google Scholar 

  37. (a) Delepine, M.; Badoche, M., C.R. Acad. Sci. Paris. 1942, 214, 777. (b) Medard, L.; Thomas, M., Mem. Poudres, 1949, 29, 173. We have chosen an average value of the nearly identical results from these sources.

  38. Pepekin, V. I.; Matyushin, Yu. N.; Lebedev, Yu. A., Bull. Acad. Sci. USSR, Div. Chem. Sci. 1974, 1707.

  39. Freeman, F.; Gomarooni, F.; Hehre, W. J., Struct. Chem., 1902, 13, 115.

    Google Scholar 

  40. Roux, M. V.; Temprado, M.; Jimánez, P.; Dávalos, J. Z.; Notario, R.; Guzmán-Mejía, R., Juaristi, E., J. Org. Chem.; 2003; 68, 1762.

    Google Scholar 

  41. Morais, V. M. F.; Matos, M. A. R.; Miranda, M. S.; Liebman, J. F., Mol. Phys. 1904, 102, 525.

    Google Scholar 

  42. Cochran, K.; Forde, G.; Hill, G. A.; Gorb, L.; Leszczyáski, J., Struct. Chem. 2002, 13,133.

    Google Scholar 

  43. Kuznetzov, A. E.; Boldyrev, A. I., Struct. Chem. 1902, 13, 141.

    Google Scholar 

  44. Hoard, J. L.; Hughes, R. E. In The Chemistry of Boron and its Compounds; Muetterties, E. L., Ed.; Wiley: New York, 1967.

    Google Scholar 

  45. Ref. 44, p. 101.

  46. This is reminiscent of the corresponding diborides, i.e. MB2, which have likewise been correspondingly described as graphite-like with intercalating metals, i.e. each boron has gained an electron to form B-, and so is isoelectronic with carbon for this and other analogies comparing boron and carbon chemistry, see Jemmis, E. D.; Jayasree, E. G.; Acc. Chem. Res. 2003, 36, 816.

  47. Freeman, F.; Gomarooni, F.; Hehre, W. J., Struct. Chem. 1902, 13, 149.

    Google Scholar 

  48. Enthalpies of formation for various sulfenates have been suggested in Liebman, J. F.; Crawford, K. S. K.; Slayden, S. W., In The Chemistry of Functional Groups Supplement S: The Chemistry of Sulphur-containing Functional Groups; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1993.

  49. Daválos, J. Z.; Flores, H.; Jimánez, P.; Notario, R.; Roux, M. V.; Juaristi, E.; Hosmane, R. S.; Liebman, J. F., J. Org. Chem. 1999, 64, 9328.

    Google Scholar 

  50. Sunner, S., Nature. 1955, 176, 217.

    Google Scholar 

  51. Pandey, R. B., Struct. Chem. 1902, 13, 161.

    Google Scholar 

  52. (a) Chickos, J. S.; Nichols, G., J. Chem. Eng. Data. 2001, 46, 562. (b). Chickos, J. S., J. Chem. Eng. Data. 2004, 49, 518.

    Google Scholar 

  53. Actually, we are asking multiple questions here -- in the particular, what is found for the various isomeric arrangements of the CH2 and CF2 group. After all, polyvinylidene fluoride and an alternating polymer of ethylene and tetrafluoroethylene are really quite distinct with their repeat units –(CH2CF2)2− and –CH2CH2CF2CF2− respectively.

  54. Magers, D. H.; Qiong, H.; Leszczyáski, J., Struct. Chem. 2002, 13, 165.

    Google Scholar 

  55. (a) Milligan, D.E.; Jacox, M. E., J. Chem. Phys. 1971, 55, 3404. (b). Jacox, M. E., J. Phys. Chem., Ref. Data Supplement B; 1903, 32, 1

    Google Scholar 

  56. (a) Li, RJ.; Continetti, R. E., J. Phys. Chem. A. 2002, 106, 1183. (b). Arnold, D. W.; Neumark, D. M., J. Chem. Phys. 1995, 102, 7035.

  57. Weaver, A.; Arnold, D. W.; Bradforth, S. E.; Neumark, D. M., J. Chem. Phys. 1991, 94, 1740.

    Google Scholar 

  58. Han, J.-G.; Xiao, C.; Hagelberg, F., Struct. Chem. 2002, 13, 173.

    Google Scholar 

  59. Fisher, E. W.; Rojnuckarin, A.; Kim, S., Struct. Chem. 1902, 13, 193.

    Google Scholar 

  60. Strictly speaking, the FeBr2(CO)4− was in dilute solution, 1:1700, but this should not affect any conclusions, qualitative or even quantitative we wish to make (indeed, were to consider FeBr2 at a comparable dilution (1:1650), then the enthalpy for this alternative reaction results differs by about 5 kJ/mol from our earlier value).

  61. Hargittai, I., Struct. Chem. 1902, 13, 213.

    Google Scholar 

  62. Mackay, A. L., Struct. Chem. 2002, 13, 215.

    Google Scholar 

  63. Pilcher, G.; Skinner, H. A., In The Chemistry of the Metal-Carbon Bond. 1982; Hartley, F.; Patai, S., Eds.; Wiley:, Chichester, 1982. See, for example, the boron-containing species in this review.

    Google Scholar 

  64. Kaczmarczyk, A.; Nihols, W. C.; Stockmayer, W. H.; Eames, T. B., Inorg. Chem. 1968, 7, 1057. These authors reported an enthalpy of formation of aqueous [B10H10]2- as measured by reaction calorimetry, but were unable to perform a corresponding measurement on aqueous [B12H12]2- because of the excessive, at least kinetic, stability of this icosahedral anion.

  65. Bühl, M.; Hirsch, A., Chem. Rev. 1902, 101, 1153.

    Google Scholar 

  66. This quote appears on p. 1160 of this article, acknowledging that there are a variety of criteria for aromaticity.

  67. See the discussion by Slayden and Liebman, ref. 11, in the same special topical issue as that for aromaticity in the above citation. The study cited here limits its attention to an “experimental thermochemical perspective.” We also explicitly note the review by Minas da Piedade, M. E. In Energetics of Stable Molecules and Reactive Intermediates; p. 48. Minas da Piedade, M. E., Ed.; NATO ASI Series 535C, Kluwer: Dordrecht, 1999. This source states eight references on the experimental thermochemistry of fullerenes and 24 references on the theoretical thermochemistry of fullerenes.

  68. Černušák, I.; Gregurick, S. K.; Roswell, M.; Deakyne, C. A.; Jenkins, H. D. B.; Liebman, J. F., Coll. Czech. Chem. Commun. 2004, 69, 230. See this source for a related discussion of the entropy of usually rather normal diatomic molecules, 1Σ XY, for X and Y taken from H, the halogens, alkali metals and the lighter trellides B and Al.

  69. Perks, H. M.; Liebman, J. F., Struct. Chem. 1902, 11, 325.

    Google Scholar 

  70. Boese, R.; Desiraju, G. R.; Jetti, R. K. R.; Kirchner, M. T.; Ledoux, I.; Thalladi, V. R.; Zyss, J., Struct. Chem. 2002, 13, 321.

    Google Scholar 

  71. Swarts, F.; Chim. J. Phys. 1919, 17, 3.

    Google Scholar 

  72. Slayden, S. W.; Liebman, J. F., In The Chemistry of Phenols, Rappoport, Z. Ed.; Wiley: Chichester, 2003.

    Google Scholar 

  73. We have been perhaps too generous. The value suggested p-difluorobenzene in ref. 71 and the contemporary, archival one differ by 100’s of kJ/mol!

  74. Lah, N.; Šegedin, P.; Leban, I., Struct. Chem. 2002, 13, 357.

    Google Scholar 

  75. Katritzky, A. R.; Jug, D.; Oniciu, D. C., Chem. Rev. 1902, 101, 1421.

    Google Scholar 

  76. Cindriá, M.; Strukan, N.; Kajfež, T.; Kamenar, B., Struct. Chem. 2002, 12, 361.

    Google Scholar 

  77. Popoviá, Z; Pavloviá, G; Soldin, Ž.; Popoviá, J; Matkoviá-Calogoviá, D.; Rajiá, M.Struct. Chem. 1902, 13, 415.

    Google Scholar 

  78. Popoviá, Z.; Pavloviá, G.; Soldin, Ž.; Popoviá, J.; Matkoviá-Calogoviá, D.; Rajiá, M., Struct. Chem. 2002, 13, 425.

    Google Scholar 

  79. Ribeiro da Silva, M. A. V.; Reis, A. M. M. V.; Faria, R. I. M. C. P. J. Chem. Thermodyn. 1995, 27, 1365.

    Google Scholar 

  80. Chickos, J. S.; Hesse, D. G.; Liebman, J. F.; Panshin, S. Y., J. Org. Chem. 1988, 53, 3424. This near equality reliably applies to vaporization enthalpies, and optimistically to sublimation enthalpies as well.

    Google Scholar 

  81. Shen, L.; Feng, X., Struct. Chem. 1902, 13, 437.

    Google Scholar 

  82. We do not know about the enthalpy of the reaction in reference 81, since we lack the requisite enthalpy of formation of all four species that appear within.

  83. Breitbeil, F. W.III,; Seconi, D.; Duggan, C.; Phanstiel, O.IV, Struct. Chem. 1902, 13, 443.

    Google Scholar 

  84. The thermochemistry of cyclopropanes was reviewed in Liebman, J. F., In The Chemistry of the Cyclopropyl Group; Vol. 2., Rappoport, Z., Ed.; Wiley: Chichester, 1995 while that of cyclobutanes was reviewed in Liebman, J. F.; Slayden, S. W., In Rappoport, Z.; Liebman, J. F., Eds., The Chemistry of Cyclobutanes; Wiley: Chichester, 2005.

  85. Verevkin, S. P.; Kümmerlin, M.; Beckhaus, H.-D.; Galli, C.; Rüchardt, C., Eur. J. Org. Chem. 1998, 579.

  86. Verevkin, S. P.; Beckhaus, H.-D.; Rüchardt, C., Thermochim. Acta. 1992, 27, 197.

    Google Scholar 

  87. Imamura, A.; Takahashi, K.; Murata, S.; Sakiyama, M., J. Chem. Thermodyn, 1989, 21, 237.

    Google Scholar 

  88. Hacking, J. M.; Pilcher, G., J. Chem. Thermodyn. 1979, 11, 1015. Note, the last species herein is not what is customarily called acetylacetone since this last species is, in fact, the intramolecularly hydrogen-bonded stabilized enolone.

    Google Scholar 

  89. Tsao, J. F.; Thompson, H. W.; Lalancette, R. A. Struct. Chem. 1902, 12, 455.

    Google Scholar 

  90. Wiberg, K. B.; Dailey, W. P.; Waddell, S. T.; Crocker, L. S.; and Newton, M., J. Amer. Chem. Soc. 1985, 107, 7247.

    Google Scholar 

  91. Wiberg, K. B.; Connon, H. A.; Pratt, W. E., J. Amer. Chem. Soc. 1979, 101, 6971.

    Google Scholar 

  92. Kiparisova, E. G.; Bykova, T. A.; Lebedev, B. V., Vses. Konf. Kalorim. Rasshir. Tezisy Dokl. 7th, 1977, 1, 106.

    Google Scholar 

  93. Leitao, M. L. P.; Pilcher, H.; Meng-Yan, Y.; Brown, J. M.; Conn, A. D., J. Chem. Thermodyn. 1990, 22, 885. Wilberg, K. B.; Waldron, R. F., J. Am. Chem. Soc. 1991, 113, 7697.

  94. The requisite enthalpy of formation of cyclohexane-1,4-dione is from Pilcher, G.; Parchment, O. G.; Hillier, I. H.; Heatley, F.; Fletcher, D.; Ribeiro da Silva, M. A. V.; Ferrao, M. L. C. C. H.; Monte, J. S.; Jiye, F., J. Phys. Chem. 1993, 97, 243.

    Google Scholar 

  95. Goetz-Grandmont, G. J.; Brunette, J. P.; De Cian, A.; Kyritsakas, N., Struct. Chem. 1902, 13, 459.

    Google Scholar 

  96. Chia, Y.-T, H. E. Simmons, J. Amer. Chem. Soc. 1967, 89, 2638. This source shows one of the very few examples known to the authors of the mono and dibenzotetraazapentalenes. In the particular, we chronicle monobenzo-1,3a,4,6a-tetraazapentalene (Δ Hf0(s) = 495.8 ± 2.1 J/mol), Δ Hf0(g) = 570.7 ± 5.0 kJ/mol) and its1,3a,6,6a-isomer(Δ Hf0 (s) = 472.8 ± 2.5 kJ/mol, Δ Hf0 (g) = 536.4 ± 5.4 kJ/mol) and their dibenzo counterparts dibenzo- 1,3a,4,6a-tetraazapentalene (Δ Hf0 (s) = 527.2 ± 2.9 kJ/mol, Δ Hf0 (g) = 527.2 ± 3.8) and its 1,3a,6,6a isomer (Δ Hf0 (s)= 510.4± 2.9 kJ/mol, Δ Hf0 (g) = 552.7 ± 6.3). Of additional interest is that the sublimation enthalpies are not particularly different from the carbocyclic polynuclear aromatic hydrocarbons of roughly the same size and shape. This suggests that these tetrazapentalenes are not particularly polar despite their meso-ionic description.

  97. Haase, R.; Meinhold, D. S.; Thomas, B.; Weber, E.; Reinwald, G., Struct. Chem. 1902, 12, 459.

    Google Scholar 

  98. Notario, R.; Roux, M. V.; Liebman, J. F., Mol. Phys. 2004, 102, 623.

    Google Scholar 

  99. Frydenvang, K.; Greenwood, J. R.; Vogensen, S. B.; Brehm, L, Struct. Chem. 1902, 12, 471.

    Google Scholar 

  100. Taskinen, E., Tetrahedron. 1994, 50, 1885.

    Google Scholar 

  101. Zhu, N.; Johnson, L.; White, J.; Klein-Stevens, C. L., Struct. Chem. 1902, 12, 479.

    Google Scholar 

  102. Steele, W. V.; Chirico, R. D.; Hossenlopp, I. A.; Nguyen, A.; Smith, N. K.; Gammon, B. E., J. Chem. Thermodyn. 1989, 21, 81.

    Google Scholar 

  103. Hosmane, R. S.; Liebman, J. F., Struct. Chem. 1902, 13, 501.

    Google Scholar 

  104. (a) Simon, J. D.; Peters, K. S., J. Am. Chem. Soc. 1983, 105, 5156. (b) Hartstock, F. W.; Kanabus-Kaminska, J. M.; Griller, D., Int. J. Chem. Kinet. 1989, 21, 157.

    Google Scholar 

  105. Webster, O. W., J. Am. Chem. Soc. 1966, 88, 4055.

    Google Scholar 

  106. Glowiak, B., Chem. Stosow. 1961, 576. See also, Hosmane, R. S.; Liebman, J. F., Struct. Chem. 2004, 14, 253.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel F. Liebman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stem-Beren, M.R., Liebman, J.F. Interplay of Thermochemistry and Structural Chemistry, the Journal (Volume 13, 2002) and the Discipline. Struct Chem 16, 159–168 (2005). https://doi.org/10.1007/s11224-005-2846-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-2846-5

Keywords

Navigation