Skip to main content
Log in

Hydrogen–hydrogen bonding in biphenyl revisited

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The evidence for the stabilizing nature of the H–H bonding in planar biphenyl is succinctly reviewed. The stabilizing nature of the H–H bonding is revealed through a comparison of the atomic energy of every atom in planar biphenyl with the same atom in the twisted equilibrium structure. It is shown that the barrier to rotation via the planar transition state is the net resultant of a stabilisation of the four ortho-hydrogen atoms (by 8 kcal/mol each), a stabilisation of the two para-carbon atoms (by 3 kcal/mol each) and by the dominant destabilisation of the two carbon atoms joining the two rings—the two junction carbon atoms—(by 22 kcal/mol each). The energetic stabilisation of the four ortho-hydrogen atoms is further shown to be in large proportion due to the formation of the hydrogen–hydrogen interatomic surface. Furthermore, neither the “bond order” between the two junction carbon atoms nor the total electron delocalisation between the two rings exhibit a significant change in going from the planar to the twisted equilibrium geometry. These findings are in contrast with the classical view of a balance between “steric non-bonded repulsion” and better electron delocalisation as a function of the twist dihedral angle. Similar conclusions have been recently reached by Pacios and Gómez through a study of the electrostatic potential at the position of the hydrogen nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2889–2895

    Article  CAS  Google Scholar 

  2. Poater J, Solà M, Bickelhaupt FM (2006) Chem Eur J 12:2902–2905

    Article  CAS  Google Scholar 

  3. Bader RFW (2006) Chem Eur J 12:2896–2901

    Article  CAS  Google Scholar 

  4. Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Chem Eur J 9:1940–1951

    Article  CAS  Google Scholar 

  5. Matta CF (2006) Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydrogen atoms. A critical review. In: Grabowski S (ed) Hydrogen Bonding—New Insight, (Challenges and advances in computational chemistry and physics series), Springer, pp 337–376

  6. Glukhov IV, Lyssenko KA, Korlyukov AA, Antipin MY (2005) Russ Chem Bull Int Ed 54:547–559

    Article  CAS  Google Scholar 

  7. Coskun N, Parlar A, Karabiyik H, Aygun M, Buyukgungor O (2006) Struct Chem 17:431–438

    Article  CAS  Google Scholar 

  8. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  9. Crabtree RH (1998) Science 282:2000–2001

    Article  CAS  Google Scholar 

  10. Stevens RC, Bau R, Milstein D, Blum O, Koetzle TF (1990) J Chem Soc Dalton Trans 1429–1432

  11. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  12. Lee JC Jr, Peris E, Rheingold AL, Crabtree RH (1994) J Am Chem Soc 116:11014–11019

    Article  CAS  Google Scholar 

  13. Richardson TB, de Gala S, Crabtree RH (1995) J Am Chem Soc 117:12875–12876

    Article  CAS  Google Scholar 

  14. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TF (1996) Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  15. Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) J Am Chem Soc 121:6337–6343

    Article  CAS  Google Scholar 

  16. Crabtree RH (1990) Acc Chem Res 23:95–101

    Article  CAS  Google Scholar 

  17. Ermer O, Mason SA (1983) J Chem Soc Chem Commun 53–54

  18. Bodige SG, Sun D, Marchand AP, Namboothiri NN, Shukla R, Watson WH (1999) J Chem Cryst 29:523–530

    Article  CAS  Google Scholar 

  19. Robertson KN (2001) Intermolecular interactions in a series of organoammonium tetraphenylborates. Ph.D. Thesis, Dalhousie University: Halifax, Canada

  20. Robertson KN, Knop O, Cameron TS (2003) Can J Chem 81:727–743

    Article  CAS  Google Scholar 

  21. Wang C-C, Tang T-H, Wu L-C, Wang Y (2004) Acta Cryst A 60:488–493

    Article  Google Scholar 

  22. Grabowski SJ, Pfitzner A, Zabel M, Dubis AT, Palusiak M (2004) J Phys Chem B 108:1831–1837

    Article  CAS  Google Scholar 

  23. Bacchi A, Bosetti E, Carcelli M, Pelagatti P, Rogolini D (2004) Eur J Inorg Chem 1985–1991

  24. Pozzi CG, Fantoni AC, Goeta AE, Wilson CC, Autino JC, Punte G (2005) J Mol Struct 753:173–181

    Article  CAS  Google Scholar 

  25. Nemes GC, Silaghi-Dumitrescu L, Silaghi-Dumitrescu I, Escudié J, Ranaivonjatovo H, Molloy KC, Mahon MF, Zukerman-Schpector J (2005) Organometallics 24:1134–1144

    Article  CAS  Google Scholar 

  26. (a) Zhurova EA, Matta CF, Wu N, Zhurov VV, Pinkerton AA (2006) J Am Chem Soc 128: 8849–8861, (b) Wolstenholme D, Matta CF, Cameron TS (2007) J Phys Chem A (in press)

  27. Cioslowski J, Mixon ST (1992) Can J Chem 70:443–449

    Article  CAS  Google Scholar 

  28. Matta CF (2002) Applications of the quantum theory of atoms in molecules to chemical and biochemical problems. Ph.D. Thesis; McMaster University: Hamilton, Canada

  29. Cortés-Guzmán F, Hernández-Trujillo J, Cuevas G (2003) J Phys Chem A 107:9253–9256

    Article  Google Scholar 

  30. Montejo M, Navarro A, Kearley GJ, Vázquez J, López-González JJ (2004) J Am Chem Soc 126:15087–15095

    Article  CAS  Google Scholar 

  31. Vila A, Mosquera RA (2005) J Phys Chem A 109:6985–6989

    Article  CAS  Google Scholar 

  32. Glukhov IV, Antipin MY, Lyssenko KA (2004) Eur J Inorg Chem 1379–1384

  33. Peńa Ruiz T, Navarro A, Kearley GJ, Fernández Gómez M (2005) Chem Phys 317:159–170

    Article  Google Scholar 

  34. O′Brien CJ, Kantchev EAB, Chass GA, Hadei N, Hopkinson AC, Organ MG, Setiadi DH, Tang T-H, Fang D-C (2005) Tetrahedron 61:9723–9735

    Article  CAS  Google Scholar 

  35. Rzepa HS (2005) Org Lett 7:4637–4639

    Article  CAS  Google Scholar 

  36. Freitas RF, Galembeck SE (2006) Chem Phys Lett 423:131–137

    Article  CAS  Google Scholar 

  37. Freitas RF, Galembeck SE (2006) J Phys Chem B 110:21287–21298

    Article  CAS  Google Scholar 

  38. Geier J, Rüegger H, Grützmacher H (2006) Dalton Trans 129–136

  39. Matta CF, Castillo N, Boyd RJ (2006) J Phys Chem B 110:563–578

    Article  CAS  Google Scholar 

  40. Damodharan L, Pattabhi V (2004) Tetrahedron Lett 45:9427–9429

    Article  CAS  Google Scholar 

  41. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  42. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Google Scholar 

  43. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill WPM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian Inc., Pittsburgh PA

  45. Biegler-König FW, Bader RFW, Tang T-H (1982) J Comp Chem 13:317–328

    Article  Google Scholar 

  46. Bader RFW http://www.chemistry.mcmaster.ca/aimpac/

  47. Biegler-König FW, Schönbohm J, Bayles D (2001) J Comp Chem 22:545–559

    Article  Google Scholar 

  48. Biegler-König FW, Schönbohm J, Bayles D AIM2000 program can be downloaded from Internet at http://www.gauss.fh-bielefeld.de/aim2000 Web Page

  49. Vilkov LV, Mastryukov VS, Sadova NI (1983) Determination of the geometrical structure of free molecules, (English translation). Mir Publishers, Moscow

    Google Scholar 

  50. Thom R (1972) Structural stability and morphogenesis: an outline of a general theory of models (English Translation). Adison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  51. Poston T, Stewart I (1978) Catastrophe theory and its applications. Dover Publications, Inc., Mineola

    Google Scholar 

  52. Poater J, Visser R, M. Solà, Bickelhaupt FM (2007) J Org Chem 72:1134–1142

    Article  CAS  Google Scholar 

  53. Löwdin P-O (1959) J Mol Spectr 3:46–66

    Article  Google Scholar 

  54. Magnoli DE, Murdoch JR (1982) Int J Quantum Chem 22:1249–1262

    Article  CAS  Google Scholar 

  55. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  56. Matta CF, Hernández-Trujillo J (2003) J Phys Chem A 107:7496–7504 (Correction: J. Phys. Chem A, 2005, 109, 10798)

  57. Wilson EB (1962) J Chem Phys 36:2232–2233

    Article  CAS  Google Scholar 

  58. Politzer P, Parr RG (1974) J Chem Phys 61:4258–4262

    Article  CAS  Google Scholar 

  59. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  60. Pacios LF, Gómez L (2006) Chem Phys Lett 432:414–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge DGSCA—UNAM for computational resources and project 24817 CONACYT-México, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Mount Saint Vincent University for funding. We also thank Dr. Todd A. Keith for making a copy of AIMALL97 available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérif F. Matta.

Additional information

We dedicate this article to Professor TM Krygowski on the occasion of his 70th birthday wishing him a long and productive life.

Appendix

Appendix

Summary of the differences between H–H bonding and dihydrogen bonding

Table A1 Comparison between H–H bonding and dihydrogen bonding (from Ref. [5], distilled from Ref. [4])

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Trujillo, J., Matta, C.F. Hydrogen–hydrogen bonding in biphenyl revisited. Struct Chem 18, 849–857 (2007). https://doi.org/10.1007/s11224-007-9231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9231-5

Keywords

Navigation