Skip to main content
Log in

An ab initio and density functional theory study on the mechanism for the reaction of OH with 2-ethylfuran

  • Brief Communication
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of the reaction of OH + 2-ethylfuran has been investigated using the G3MP2 and G3MP2B3 levels of theory. The geometric parameters of all species involved in the reaction have been optimized at the MP2 and B3LYP levels of theory with 6-311G(d,p) basis set. The overall profile of doublet potential energy surface (PES) for the OH + 2-ethylfuran reaction has been constructed using the G3MP2 and G3MP2B3 methods. The results show that the addition-elimination mechanism dominates the OH + 2-ethylfuran reaction and the major products are CH3CH2C(OH)CHCHCHOH (P8) and CH3CH2COCHCHCHOH (P6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Isidorov VA, Zenkevich IG, Ioffe BV (1985) Atmos Environ 19:1. doi:10.1016/0004-6981(85)90131-3

    Article  CAS  Google Scholar 

  2. Andreae MO, Merlet P (2001) Global Biogeochem Cycles 15:955. doi:10.1029/2000GB001382

    Article  CAS  Google Scholar 

  3. Ohta T (1984) Bull Chem Soc Jpn 57:960. doi:10.1246/bcsj.57.960

    Article  CAS  Google Scholar 

  4. Tuazon EC, Atkinson R (1990) Int J Chem Kinet 22:1221. doi:10.1002/kin.550221202

    Article  CAS  Google Scholar 

  5. Paulson SE, Flagan RC, Seinfeld JH (1992) Int J Chem Kinet 24:79. doi:10.1002/kin.550240109

    Article  CAS  Google Scholar 

  6. Atkinson R, Aschmann SM, Carter WPL (1983) Int J Chem Kinet 15:51. doi:10.1002/kin.550150106

    Article  CAS  Google Scholar 

  7. Bierbach A, Barnes I, Becker KH (1992) Atmos Environ 26A:813

    CAS  Google Scholar 

  8. Bierbach A, Barnes I, Becker KH (1995) Atmos Environ 29:2651. doi:10.1016/1352-2310(95)00096-H

    Article  CAS  Google Scholar 

  9. Alvarado A, Atkinson R, Arey J (1996) Int J Chem Kinet 28:905. doi:10.1002/(SICI)1097-4601(1996)28:12<905::AID-KIN7>3.0.CO;2-R

    Article  CAS  Google Scholar 

  10. Atkinson R, Aschmann SM, Tuazon EC, Arey J, Zielinska B (1989) Int J Chem Kinet 21:593. doi:10.1002/kin.550210709

    Article  CAS  Google Scholar 

  11. Lee JH, Tang IN (1982) J Chem Phys 77:4459. doi:10.1063/1.444367

    Article  CAS  Google Scholar 

  12. Wine PH, Thompson RJ (1984) Int J Chem Kinet 16:867. doi:10.1002/kin.550160707

    Article  CAS  Google Scholar 

  13. Cabañas B, Villanueva F, Martín P, Baeza MT, Salgado S, Jiménez E (2005) Atmos Environ 39:1935. doi:10.1016/j.atmosenv.2004.12.013

    Article  Google Scholar 

  14. Atklnson R, Aschmann SM, Wlner AM, Carter WPL (1985) Environ Sci Technol 19:87. doi:10.1021/es00131a010

    Article  Google Scholar 

  15. Atkinson R, Aschmann SM, Pitts JN Jr (1988) J Phys Chem 92:3454. doi:10.1021/j100323a028

    Article  CAS  Google Scholar 

  16. Kind I, Berndt T, Böge O, Rolle W (1996) Chem Phys Lett 256:679. doi:10.1016/0009-2614(96)00513-1

    Article  CAS  Google Scholar 

  17. Berndt T, Böge O, Rolle W (1997) Environ Sci Technol 31:1157. doi:10.1021/es960669z

    Article  CAS  Google Scholar 

  18. Cabañas B, Baeza MT, Salgado S, Martín P, Taccone R, Martínez E (2004) J Phys Chem A 108:10818. doi:10.1021/jp046524t

    Article  Google Scholar 

  19. Bierbach A, Barnes I, Becker KH (1996) Int J Chem Kinet 28:565. doi:10.1002/(SICI)1097-4601(1996)28:8<565::AID-KIN2>3.0.CO;2-T

    Article  CAS  Google Scholar 

  20. Bierbach A, Barnes I, Becke KH (1999) Atmos Environ 33:2981. doi:10.1016/S1352-2310(99)00084-9

    Article  CAS  Google Scholar 

  21. Zhang WC, Du BN, Mu LL, Feng CJ (2008) Int J Quantum Chem 108:1232. doi:10.1002/qua.21617

    Article  CAS  Google Scholar 

  22. Zhang WC, Du BN, Mu LL, Feng CJ (2008) J Mol Struct Theochem 851:353. doi:10.1016/j.theochem.2007.11.010

    Article  CAS  Google Scholar 

  23. Zhang WC, Wang T, Du BN, Mu LL, Feng CJ (2008) Chem Phys Lett 455:164. doi:10.1016/j.cplett.2008.02.100

    Article  CAS  Google Scholar 

  24. Møller C, Plesset MS (1934) Phys Rev 46:618. doi:10.1103/PhysRev.46.618

    Article  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  27. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154. doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  28. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523. doi:10.1021/j100377a021

    Article  CAS  Google Scholar 

  29. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703. doi:10.1063/1.478385

    Article  CAS  Google Scholar 

  30. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650. doi:10.1063/1.478676

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.01. Gaussian, Inc., Pittsburgh PA

  32. Wallington TJ (1986) Int J Chem Kinet 18:487. doi:10.1002/kin.550180407

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of Xuzhou Normal University (07XLA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Feng, C., Du, B. et al. An ab initio and density functional theory study on the mechanism for the reaction of OH with 2-ethylfuran. Struct Chem 20, 525–532 (2009). https://doi.org/10.1007/s11224-008-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9391-y

Keywords

Navigation