Skip to main content
Log in

Study of coulomb explosion and dissociation channels in dicationic argon clusters: a study based on stochastic optimization

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this article, we explore the use of stochastic optimization technique, namely simulated annealing, in elucidating the correct cut-off limit for suppression of Coulomb explosion in dicationic argon gas clusters. We also do a detail study of cluster sizes where the clusters are not stable as one single entity, and try to find out the dissociation channels for these, namely fission or non-fission type. We compare our results with available literature results, both theoretical and experimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wales DJ, Doye JPK (1997) J Phys Chem A 101:5111

    Article  CAS  Google Scholar 

  2. Gonzalez BS, Hernandez Rojas J, Wales DJ (2005) Chem Phys Lett 412:23

    Article  CAS  Google Scholar 

  3. Hernandez Rojas J, Breton J, Gomez Llorente JM, Wales DJ (2004) J Chem Phys 121:12315

    Article  CAS  Google Scholar 

  4. Niesse JA, Mayne HR (1996) J Comp Chem 18:1233

    Article  Google Scholar 

  5. Pullan WJ (1996) J Comp Chem 18:1096

    Article  Google Scholar 

  6. Shao X, Liu X, Cai W (2005) J Chem Theor Comput 1:762

    Article  CAS  Google Scholar 

  7. Massen C, Mortimer Jones TV, Johnston RL (2002) J C S Dalton Trans 4375

  8. Ismail R, Johnston RL (2010) Phys Chem Chem Phys 12:8607

    Article  CAS  Google Scholar 

  9. Baik J, Kim J, Majumdar D, Kim KS (1999) J Chem Phys 110:9116

    Article  CAS  Google Scholar 

  10. Kim J, Lee HM, Suh SB, Majumdar D, Kim KS (2000) J Phys Chem 113:5259

    Article  CAS  Google Scholar 

  11. Bulusu S, Yoo S, Apra E, Xantheas S, Zeng XC (2006) J Phys Chem A 110:11781

    Article  CAS  Google Scholar 

  12. Shin JW, Hammer NI, Dikken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Science 304:1137

    Article  CAS  Google Scholar 

  13. Dikken EG, Robertson WH, Johnson MA (2004) J Phys Chem A 108:64

    Article  Google Scholar 

  14. Robertson WH, Johnson MA (2003) Ann Rev Phys Chem 54:173

    Article  CAS  Google Scholar 

  15. Ayotte P, Nielsen SB, Weddle GH, Johnson MA, Xantheas S (1999) J Phys Chem A 103:10665

    Article  CAS  Google Scholar 

  16. Chaudhury P, Bhattacharyya SP, Quapp W (2000) Chem Phys 253:295

    Article  CAS  Google Scholar 

  17. Xantheas S (1995) J Am Chem Soc 117:10373

    Article  CAS  Google Scholar 

  18. Scheier P, Märk TD (1987) J Chem Phys 86:3056

    Article  CAS  Google Scholar 

  19. Gay JG, Berne BJ (1982) Phys Rev Lett 49:194

    Article  CAS  Google Scholar 

  20. Gotts NG, Lethbridge PG, Statce AJ (1992) J Chem Phys 96:408

    Article  CAS  Google Scholar 

  21. Sattler K, Muhlbach J, Echt O, Pfau P, Recknagel E (1981) Phys Rev Lett 47:160

    Article  CAS  Google Scholar 

  22. Walter CW, Bae YK, Lorents DC, Peterson JR (1992) Chem Phys Lett 195:543

    Article  CAS  Google Scholar 

  23. Rühl E, Heinzel C, Baumgartel H, Lavollee M, Morin P (1994) Z Phys D 31:245

    Article  Google Scholar 

  24. Ishikawa K, Blenski T (2000) Phys Rev A 62:063204

    Article  Google Scholar 

  25. Goldberg A, Last I, George TF (1994) J Chem Phys 100:8277

    Article  CAS  Google Scholar 

  26. Last I, Levy Y, Jortner J (2005) J Chem Phys 123:154301

    Article  Google Scholar 

  27. Last I, Levy Y, Jortner J (2002) Proc Natl Acad Sci 99:9107

    Article  CAS  Google Scholar 

  28. Hoener M, Bostedt C, Schrob S, Thomas H, Foucar L, Jagutzki O, SchmidtBöcking H, Dörner R, Möller T (2008) Phys Rev A 78:021201(R)

    Article  Google Scholar 

  29. Nandy S, Chaudhury P, Bhattacharyya SP (2010) J Chem Phys 132:234104

    Article  Google Scholar 

  30. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220:671

    Article  CAS  Google Scholar 

  31. Kirkpatrick S (1984) J Stat Phys 34:975

    Article  Google Scholar 

  32. Chaudhury P, Metzler R, Banik SK (2009) J Phys A 42:335101

    Article  Google Scholar 

  33. Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading

    Google Scholar 

  34. Pal S, Sharma R, Goswami B, Sarkar P, Bhattacharyya SP (2009) J Chem Phys 130:214703

    Article  Google Scholar 

  35. Car R, Parinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Chaudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guha, S., Ray, S. & Chaudhury, P. Study of coulomb explosion and dissociation channels in dicationic argon clusters: a study based on stochastic optimization. Struct Chem 22, 1007–1014 (2011). https://doi.org/10.1007/s11224-011-9796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9796-x

Keywords

Navigation