Skip to main content
Log in

Hydrolysis mechanism of anticancer Pd(II) complexes with coumarin derivatives: a theoretical investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrolysis reaction mechanisms of a new generation Pd(II) anticancer drugs containing coumarin derivatives have been investigated combining density functional theory with the conductor-like dielectric continuum model approach. The first and the second aquation processes have been explored for the cis and trans counterpart of title PdL2 complex. Two possibilities for the second hydrolysis process have been analyzed for both compounds. From our data emerge that cis and trans PdL2 compounds have a different behavior in water. cis-isomer readily undergo first hydrolysis process generating a mono-aqua complex while both the pathways investigated for the second aquation reaction are more energetically demanding, suggesting that the mono-aqua complex could act as active species. On the contrary, for trans-compound, both the investigated reactions for the second aquation process occur by overcoming activation barriers comparable with that found for the first hydrolysis reaction. According to our data, trans-oriented PdL2 drug could undergo degradation process generating non-active compounds with the consequent lack of pharmacological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosenberg B, Camp L, Krigas T (1965) Nature 205:698

    Article  CAS  Google Scholar 

  2. Rosenberg B, Camp L, Trosko J, Mansour VH (1969) Nature 222:385

    Article  CAS  Google Scholar 

  3. Brabec V, Leng M (1993) Proc Natl Acad Sci USA 90:5345

    Article  CAS  Google Scholar 

  4. Zheng HH, Xu ZH, Wang K (1997) Int J Biol Macromol 20:107

    Article  Google Scholar 

  5. Du WH, Han W, Li ZF, Wang BH (2000) Thermochim Acta 359:55

    Article  CAS  Google Scholar 

  6. Novakova O, Kasparkova J, Malina J, Natile G, Brabec V (2003) Nucleic Acids Res 31:6450

    Article  CAS  Google Scholar 

  7. Coluccia M, Natile G (2007) Anti-Cancer Agents Med Chem 7:111

    Article  CAS  Google Scholar 

  8. Kalinowska-Lis U, Ochocki J, Matlawska-Wasowska K (2008) Coord Chem Rev 252:1328

    Article  CAS  Google Scholar 

  9. Guo Z, Sadler PJ (1999) Angew Chem Int Ed 38:1512

    Article  CAS  Google Scholar 

  10. Farrer N, Salassa L, Sadler PJ (2009) Dalton Trans 2009:10690

    Article  Google Scholar 

  11. Blower P (2006) Dalton Trans 2006:1705

    Article  Google Scholar 

  12. Wang X, Guo Z (2008) Dalton Trans 2008:1521

    Article  Google Scholar 

  13. Fricker SP (2007) Dalton Trans 2007:4903

    Article  Google Scholar 

  14. Fricker SP (2010) Metallomics 2:366

    Article  CAS  Google Scholar 

  15. Reedijk J (2008) Macromol Symp 270:193

    Article  CAS  Google Scholar 

  16. Martínez-Lillo J, Mastropietro TF, Lappano R, Madeo A, Alberto ME, Russo N, Maggiolini M, De Munno G (2011) Chem Commun 47:5283

    Article  Google Scholar 

  17. Curic M, Tusek-Bozic L, Vikic-Topic D, Furlani SVA, Balzarini J, De Clercq E (1996) J Inorg Biochem 63:129

    Article  Google Scholar 

  18. Kirschner S, Wei YK, Francis D, Bergman JS (1966) Med Chem 9:369

    Article  CAS  Google Scholar 

  19. Higgins JD, Neely L, Fricker S (1993) J Inorg Biochem 49:149

    Article  CAS  Google Scholar 

  20. Gonzalez ML, Tercero JM, Matilla A, Niclos-Gutierrez J, Fernandez MT, Lopez MC, Alonso C, Gonzalez S (1997) Inorg Chem 36:1806

    Article  CAS  Google Scholar 

  21. Gill DS (1984) In: Hacker MP, Douple EB, Krakoff IH (eds) Platinum coordination complexes in cancer chemotherapy. Nijhoff, Boston, pp 267–278

    Chapter  Google Scholar 

  22. Al-Allaf TA, Rashan LJ (2001) Boll Chim Farm 140:205

    CAS  Google Scholar 

  23. Al-Allaf TA, Ayoub MT, Rashan LJ (1990) J Inorg Biochem 38:47

    Article  CAS  Google Scholar 

  24. Al-Allaf TA, Rashan LJ (1998) Eur J Med Chem 33:817

    Article  CAS  Google Scholar 

  25. Al-Allaf TA, Rashan LJ, Khuzaie RF, Halseh WF (1997) Asian J Chem 9:239

    CAS  Google Scholar 

  26. Al-Allaf TA, Rashan LJ, Abu-Surrah AS, Fawzi R, Steimann M (1998) Trans Met Chem 23:403

    Article  CAS  Google Scholar 

  27. Budzisz E, Keppler BK, Giester G, Wozniczka M, Kufelnicki A, Nawrot B (2004) Eur J Inorg Chem 2004:4412

    Article  Google Scholar 

  28. Kostova I, Malonov I, Karaivanova M (2001) Arch Pharm Pharm Med Chem 334:157

    Article  CAS  Google Scholar 

  29. Budzisz E, Małecka M, Lorenz IP, Mayer P, Kwiecien RA, Paneth P, Krajewska U, Rozalski M (2006) Inorg Chem 45:9688

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford

  31. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  32. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Zhang Y, Guo Z, You XZ (2001) J Am Chem Soc 123:9378

    Article  CAS  Google Scholar 

  34. Alberto ME, Lucas MF, Pavelka M, Russo N (2009) J Phys Chem B 113:14473

    Article  CAS  Google Scholar 

  35. Alberto ME, Lucas MF, Pavelka M, Russo N (2008) J Phys Chem B 112:10765

    Article  CAS  Google Scholar 

  36. Pavelka M, Lucas MF, Russo N (2007) Chem Eur J 13:10108

    Article  CAS  Google Scholar 

  37. Lucas MF, Pavelka M, Alberto ME, Russo N (2009) J Phys Chem B 113:831

    Article  CAS  Google Scholar 

  38. Alberto ME, Russo N (2011) Chem Commun 47:887

    Article  CAS  Google Scholar 

  39. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  40. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  41. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  42. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  43. Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem A 102:5074

    Article  CAS  Google Scholar 

  44. Würtz Jürgensen V, Jalkanen K (2006) Phys Biol 3:S63

    Article  Google Scholar 

  45. Shi Z, Boyd RJ (1989) J Am Chem Soc 111:1575

    Article  CAS  Google Scholar 

  46. Zhu C, Raber J, Eriksson L (2005) J Phys Chem B 109:12195

    Article  CAS  Google Scholar 

  47. Melchior A, Sánchez ME, Pappalardo RR, Martínez JM (2011) Theor Chem Acc 128:627

    Article  CAS  Google Scholar 

  48. Burda JV, Zeizinger M (2004) J Chem Phys 120:1253

    Article  CAS  Google Scholar 

  49. Raber J, Zhu C, Eriksson L (2004) Mol Phys 102:2537

    Article  CAS  Google Scholar 

  50. Alberto ME, Butera V, Russo N (2011) Inorg Chem 50:6965

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The Università della Calabria and the MIUR PRIN 2008 (2008F5A3AF_005) are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberto, M.E., Cosentino, C. & Russo, N. Hydrolysis mechanism of anticancer Pd(II) complexes with coumarin derivatives: a theoretical investigation. Struct Chem 23, 831–839 (2012). https://doi.org/10.1007/s11224-011-9927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9927-4

Keywords

Navigation