Skip to main content
Log in

Aluminum doping makes boron nitride nanotubes (BNNTs) an attractive adsorbent of hydrazine (N2H4)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Adsorption of toxic hydrazine (N2H4) at the surface of pristine and Al-doped single-wall boron nitride nanotubes (BNNTs and Al-BNNTs) has been investigated using density functional theory (DFT). Single hydrazine molecule was allowed to interact with Lewis acid center (i.e., B atom) of BNNTs, where most stable gauche conformer of the guest is used. Both zigzag (8,0) and armchair (4,4) variants of BNNTs were considered and to estimate the effect of tube diameter on adsorption energies wider zigzag (9,0) and (10,0), and armchair (5,5) and (6,6), tubes were included in the host list. Estimated adsorption energies of 2–8 kcal/mol do not support strong binding between pristine BNNTs with hydrazine. However, Al doping makes BNNTs an attractive adsorbent of N2H4 with adsorption energy in the range of 32–35 kcal/mol. Stability of such complexes is found less sensitive to the chirality, but nominally decreases with tube diameter. Thus, a large quantity of hydrazine may be adsorbed by Al-BNNT samples. The dative N: → B/Al bond between hydrazine and host tubes is the source of stability of complexes. Molecular electrostatic potentials (MEPs) and frontier molecular orbitals of host and guest were calculated to explain interaction character and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agency UEP (1999) Integrated Risk Information System (IRIS) on hydrazine/hydrazine sulfate. National Center for Environmental Assessment, Office of Research and Development, Washington, DC

  2. Reilly CA, Aust S (1997) Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA. Chem Res Toxicol 10(3):328–334

    Article  CAS  Google Scholar 

  3. Zelnick SD, Mattie DR, Stepanial PC (2003) Occupational exposure to hydrazines: treatment of acute central nervous system toxicity. Abviat Space Environ Med 74(12):1285–1291

    CAS  Google Scholar 

  4. Garrod S, Bollard ME, Nicholls AW, Connor SC, Connelly J, Nicholson JK, Holmes E (2005) Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem Res Toxicol 18(2):115–122

    Article  CAS  Google Scholar 

  5. Ragnarsson U (2001) Synthetic methodology for alkyl substituted hydrazines. Chem Soc Rev 30:205–213

    Article  CAS  Google Scholar 

  6. Narayanan SS, Scholz F (1999) A comparative study of the electrocatalytic activities of some metal hexacyanoferrates for the oxidation of hydrazine. Electroanalysis 11:465–469

    Article  CAS  Google Scholar 

  7. Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y, Kobayashi T (2003) Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem Commun 5(10):892–896. https://doi.org/10.1016/j.elecom.2003.08.015

    Article  CAS  Google Scholar 

  8. Singh SK, Xu Q (2013) Nanocatalysts for hydrogen generation from hydrazine. Catal Sci Technol 3:1889–1900

    Article  CAS  Google Scholar 

  9. Pelegrini M, Parreira RLT, Ferrão LFA, Caramori GF, Ortolan AO, da Silva EH, Roberto-Neto O, Rocco JAFF, Machado FBC (2016) Hydrazine decomposition on a small platinum cluster: the role of N2H5 intermediate. Theo Chem Acc 135(3):58

    Article  Google Scholar 

  10. Asazawa K, Sakamoto T, Yamaguchi S, Yamada K, Fujikawa H, Tanaka H, Oguro K (2009) Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells. J Electrochem Soc 156(4):B509–B512

    Article  CAS  Google Scholar 

  11. Yang H, AZhong X, Dong Z, Wang J, Jin J, Ma J (2012) A highly active hydrazine fuel cell catalyst consisting of a Ni–Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Adv 2:5038–5040

    Article  CAS  Google Scholar 

  12. Sutton GP, Biblarz O (2010) Rocket propulsion elements, 8th edn. Wiley, New York,

    Google Scholar 

  13. Agusta MK, Kasai H (2012) First principles investigations of hydrazine adsorption conformations on Ni(111) surface. Surf Sci 606:766–771

    Article  CAS  Google Scholar 

  14. He YB, Jia JF, Wu HS (2015) The interaction of hydrazine with an Rh(1 1 1) surface as a model for adsorption to rhodium nanoparticles: a dispersion-corrected DFT study. Appl Sutf Sci 327:462–469

    Article  CAS  Google Scholar 

  15. He Y-B, Jia J-F, Wu H-S (2015) Selectivity of Ni-based surface alloys toward hydrazine adsorption: a DFT study with van der Waals interactions. Appl Surf Sci 339:36–45

    Article  CAS  Google Scholar 

  16. Fathurrahman F, Kasai H (2015) Density functional study of hydrazine adsorption and its N=N bond cleaving on Fe(110) surface. Surf Sci 639:25–31

    Article  CAS  Google Scholar 

  17. Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Fabrication of a gold nanocage/graphene nanoscale platform for electrocatalytic detection of hydrazine. Sensors Actuators B Chem 245:55–65

    Article  CAS  Google Scholar 

  18. Hao Y, Zhang Y, Ruan K, Chen W, Zhou B, Tan X, Wang Y, Zhao L, Zhang G, Qu P, Xu M (2017) A naphthalimide-based chemodosimetric probe for ratiometric detection of hydrazine. Sensors Actuators B Chem 244:417–424

    Article  CAS  Google Scholar 

  19. Zhang J, Gao W, Dou M, Wang F, Liu J, Li Z, Ji J (2015) Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine. Analyst 140:1686–1692

    Article  CAS  Google Scholar 

  20. Deng K, Li C, Qiu X, Zhou J, Hou Z (2015) Synthesis of cobalt hexacyanoferrate decorated graphene oxide/carbon nanotubes-COOH hybrid and their application for sensitive detection of hydrazine. Electrochim Acta 174:1096–1103

    Article  CAS  Google Scholar 

  21. Tafreshi SS, Roldan A, Dzade NY, de Leeuw NH (2014) Adsorption of hydrazine on the perfect and defective copper (111) surface: a dispersion-corrected DFT study. Surf Sci 622:1–8

    Article  CAS  Google Scholar 

  22. Esrafili MD, Teymurian VM, Nurazar R (2015) Catalytic dehydrogenation of hydrazine on silicon-carbide nanotubes: a DFT study on the kinetic issue. Surf Sci 632:118–125

    Article  CAS  Google Scholar 

  23. Zhang P-X, Wang Y-G, Huang Y-Q, Zhang T, Wu G-S, Li J (2011) Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir(1 1 1). Catal Today 165:80–88

    Article  CAS  Google Scholar 

  24. McKay HL, Jenkins SJ, Wales DJ (2011) Dissociative chemisorption of hydrazine on an Fe{2 1 1} surface. J Phys Chem C 115:17812–17828

    Article  CAS  Google Scholar 

  25. Terrones M, Hsu WK, Terrones H, Zhang JP, Ramos S, Hare JP, Castillo R, Prasside K, Cheetham AK, Kroto HW, Walton DRM (1996) Metal particle catalyzed production of nanoscale BN structures. Chem Phys Lett 259:568–573

    Article  CAS  Google Scholar 

  26. Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys Rev Lett 76(25):4737–4740

    Article  CAS  Google Scholar 

  27. Terauchi M, Tanaka M, Takehisa M, Saito Y (1998) Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J Electron Microsc 47(4):319–324

    Article  CAS  Google Scholar 

  28. Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Tamiya K, Yusa H (1997) Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chem Phys Lett 279(3–4):191–196

    Article  CAS  Google Scholar 

  29. Laude T, Matsui Y, Marraud A, Jouffrey B (2000) Long ropes of boron nitride nanotubes grown by a continuous laser heating. App Phys Lett 76(22):3239–3241

    Article  CAS  Google Scholar 

  30. Golberg D, Bando Y, Sato T, Grobert N, Reyes-Reyes M, Terrones H, Terrones M (2002) Nanocages of layered BN: super-high pressure nanocells for formation of solid nitrogen. J Chem Phys 116(9):8523–8532

    Article  CAS  Google Scholar 

  31. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Open and capped (5,5) armchair SWCNTs: a comparative study of DFT-based reactivity descriptors. Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  32. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5,5) armchair SWCNT: a computational approach. J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  33. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) DFT-based reactivity study of (5,5) armchair boron nitride nanotube (BNNT). Chem Phys Lett 565:69–73

    Article  CAS  Google Scholar 

  34. Garel J, Leven I, Zhi C, Nagapriya KS, Popovitz-Biro R, Golberg D, Bando Y, Hod O, Joselevich E (2012) Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett 12:6347–6352

    Article  CAS  Google Scholar 

  35. Huang Y, Lin J, Zou J, Wang M-S, Faerstein K, Tang C, Bando Y, Golberg D (2013) Thin boron nitride nanotubes with exceptionally high strength and toughness. Nano 5:4840–4846

    CAS  Google Scholar 

  36. Sundaram R, Scheiner S, Roy AK, Kar T (2015) Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid/base interactions. Phys Chem Chem Phys 17:3850–3866

    Article  CAS  Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Sundaram R, Scheiner S, Roy AK, Kar T (2015) B═N bond cleavage and BN ring expansion at the surface of boron nitride nanotubes by iminoborane. J Phys Chem C 119:3253–3259

    Article  CAS  Google Scholar 

  40. Wu X, An W, Zeng XC (2006) Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc 128:12001–12006

    Article  CAS  Google Scholar 

  41. Li Y, Zhou Z, Zhao J (2007) Transformation from chemisorption to physisorption with tube diameter and gas concentration: computational studies on NH3 adsorption in BN nanotubes. J Chem Phys 127:184705–184706

    Article  Google Scholar 

  42. Ahmadi A, Beheshtian J, Hadipour NL (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22:183–188

    Article  CAS  Google Scholar 

  43. Zahedi E (2012) Effect of tube radius on the exohedral chemical functionalization of boron-nitride zigzag nanotubes with NH3. Physica B 407:3841–3848

    Article  CAS  Google Scholar 

  44. Rimola A, Sodupe M (2013) Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature. Phys Chem Chem Phys 15:13190–13198

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Jaramillo J, Stratmann RE, Yazyev O, Austin A, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Gaussian, Inc., Wallingford,

    Google Scholar 

  47. Soltani A, Raz SG, Rezaei VJ, Dehno Khalaji A, Savar M (2012) Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619–625

    Article  CAS  Google Scholar 

  48. Azizi K, Karimpanah M (2013) Computational study of Al- or P-doped single-walled carbon nanotube as NH3 and NO2 sensors. Appl Surf Sci 285P:102–109

    Article  Google Scholar 

  49. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23(10):1833–1840

    Article  CAS  Google Scholar 

  50. Mulliken RS (1955) Electron population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and bond energies. J Chem Phys 23(10):1841–1846

    Article  CAS  Google Scholar 

  51. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  52. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84:5687–5705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rajashabala Sundaram thanks to the University Grants Commission (UGC) of India for providing financial support to carry out research in the USA under Indo-US Raman Post-Doctoral Fellowship Program and the Department of Science and Technology (India, DST-PURSE Program). HPC center at Utah State University is acknowledged for providing computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniyandi, S., Sundaram, R. & Kar, T. Aluminum doping makes boron nitride nanotubes (BNNTs) an attractive adsorbent of hydrazine (N2H4). Struct Chem 29, 375–382 (2018). https://doi.org/10.1007/s11224-017-1034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1034-8

Keywords

Navigation