Skip to main content

Advertisement

Log in

Structural, electronic, and reactivity parameters of some triorganotin(IV) carboxylates: a DFT analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The present work explores the probable parameters responsible for the potent anticancer activity of tin-based organometallic compounds. The characteristic structural, electronic, and reactivity features of some recently synthesized triorganotin(IV) carboxylates are identified by employing the density functional theory (DFT). The influence of solvent on these parameters is analyzed. In general, the stability of the complex is found to be governed by the donor ligand, alkyl/aryl group at the tin center, and the dielectric of the medium. Gallic acid, best known for its antioxidant and apoptosis inducing ability, forms the most stable complexes with tetrahedral geometry. The NBO analysis, frontier orbitals, and various reactivity indices of the complexes are discussed in detail. The most reactive sites on the organotin complexes are also predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gasser G, Metzler-Nolte N (2012) The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol 16:84–91

    Article  CAS  Google Scholar 

  2. Liu W, Gust R (2013) Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev 42:755–773

    Article  CAS  Google Scholar 

  3. Oehninger L, Rubbiani R, Ott I (2013) N-heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans 42:3269–3284

    Article  CAS  Google Scholar 

  4. Crowe AJ (1994) In: Fricker SP (ed) Metal compounds in cancer therapy. London, Chapman and Hall

    Google Scholar 

  5. Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253:235–249

    Article  CAS  Google Scholar 

  6. Navakoski de Oliveira K, Andermark V, Onambele LA, Dahl G, Prokop A, Ott I (2014) Organotin complexes containing carboxylate ligands with maleimide and naphthalimide derived partial structures: TrxR inhibition, cytotoxicity and activity in resistant cancer cells. Eur J Med Chem 87:794–800

    Article  CAS  Google Scholar 

  7. Pizarro AM, Habtemariam A, Sadler PJ (2010) In: Jaouen G, Metzler-Nolte N (eds) Medicinal organometallic chemistry, vol 32. Springer-Verlag, Berlin Heidelberg

    Chapter  Google Scholar 

  8. Ruan B, Tian Y, Zhou H, Wu J, Hu R, Zhu C, Yang J, Zhu H (2011) Synthesis, characterization and in vitro antitumor activity of three organotin(IV) complexes with carbazole ligand. Inorg Chim Acta 365:302–308

    Article  CAS  Google Scholar 

  9. Siddiqi ZA, Shahid M, Kumar S, Khalid M, Noor S (2009) Synthesis, crystal structure and in vitro antitumor activity of carboxylate bridged dinuclear organotin(IV) complexes. J Organomet Chem 694:3768–3774

    Article  CAS  Google Scholar 

  10. Gielen M (1996) Tin-based antitumour drugs. Coord Chem Rev 151:41–51

    Article  CAS  Google Scholar 

  11. Gielen M (2002) Review: organotin compounds and their therapeutic potential: a report from the organometallic chemistry Department of the Free University of Brussels. Appl Organomet Chem 16:481–494

    Article  CAS  Google Scholar 

  12. Yang Z, Bakas T, Sanchez-Diaz A, Charalabopoulos K, Tsangaris J, Hadjiliadis NJ (1998) Interaction of Et2SnCl2 with 5′-IMP and 5′-GMP. J Inorg Biochem 72:133–140

    Article  CAS  Google Scholar 

  13. Amini MM, Azadmehr A, Alijani V, Khavasi HR, Hajiashrafi T, Kharat AN (2009) Di-and triorganotin (IV) carboxylates derived from triorganotin (IV) iodide with mixed organic groups on tin: cyclic, hexameric triorganotin (IV) carboxylates. Inorg Chim Acta 362:355–360

    Article  CAS  Google Scholar 

  14. Win YF, Teoh SG, Teh JJ, Fun HK, Zakaria L (2007) [4-(Diethylamino) benzoato-O] triphenyltin (IV). Acta Crystallogr E Struct Rep Online 63:m323–m325

    Article  CAS  Google Scholar 

  15. Win YF, Teoh SG, Vikneswaran M, Goh JH, Fun HK (2010) Poly [[aquadi- 3-malonato-hexaphenylditin (IV)] acetone solvate]. Acta Crystallogr E Struct Rep Online 66:m695–m696

    Article  CAS  Google Scholar 

  16. Win YF, Choong CS, Ha ST, Quah CK, Fun HK (2011) (2-Chloro-4- nitrobenzoato)(methanol) triphenyltin (IV). Acta Crystallogr E Struct Rep Online 67:m535

    Article  CAS  Google Scholar 

  17. Yip FW, Teoh SG, Yamin BM, Ng SW (2010) (Methanol-O)(2-methyl-3- nitrobenzoato-O) triphenyltin (IV). Acta Crystallogr E Struct Rep Online 66:m1164

    Article  CAS  Google Scholar 

  18. Zhang R, Sun J, Ma C (2005) Structural chemistry of mononuclear, tetranuclear and hexanuclear organotin (IV) carboxylates from the reaction of di-n-butyltin oxide or diphenyltin oxide with rhodanine-N-acetic acid. J Organomet Chem 690:4366–4372

    Article  CAS  Google Scholar 

  19. Win YF, Choong CS, Dang JC, Iqbal MA, Quah CK, Kanuparth SR, Haque RA, Ahamed MBK, Teoh SG (2015) Synthesis, crystal structures and spectroscopic properties of two new organotin (IV) complexes and their antiproliferative effect against cancerous and non-cancerous cells. C R Chim 18:137–148

    Article  CAS  Google Scholar 

  20. Crowe AJ (1989) In: Gielen M (ed) Metal-based antitumour drugs, vol 1. Freund, London

    Google Scholar 

  21. De Clercq L, Willem R, Gielen M (1984) Synthesis, characterisation and anti-tumour activity of bis(polyfluoroalkyl)tin dihalides. Bull Soc Chim Belg 93:1089–1097

    Article  Google Scholar 

  22. Aldridge WN (1976) In: Zuckerman JJ (ed) organotin compounds: new chemistry and applications, Vol. 157. Washington

  23. Davies AG, Smith PJ (1980) Recent advances in organotin chemistry. Adv Inorg Chem Radiochem 23:1–77

    Article  CAS  Google Scholar 

  24. Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14:500–508

    Article  CAS  Google Scholar 

  25. Baron CE, Ribot F, Steunou N, Sanchez C, Fayon F, Biesemans M, Martins JC, Willem R (2000) Reaction of butyltin hydroxide oxide with p-toluenesulfonic acid: synthesis, X-ray crystal analysis, and multinuclear NMR characterization of {(BuSn)12O14(OH)6}(4-CH3C6H4SO3)2. Organometallics 19:1940–1949

    Article  Google Scholar 

  26. Crowe AJ, Smith PJ, Atassi G (1980) Investigations into the antitumour activity of organotin compounds. I. Diorganotin dihalide and di-pseudohalide complexes. Chem Biol Interact 32:171–178

    Article  CAS  Google Scholar 

  27. Jousseaume B, Guillou V, Noiret N, Pereyre M, France JM (1993) Synthesis and thermal decomposition of substituted [2-(acyloxy)alkyl]diorganotin compounds, Bu2Sn(X)CH2 CHR1OCOR2 (X halogen 2,4-pentanedionate or OCOR), potential sources of organotin catalysts. J Organomet Chem 450:97–102

    Article  CAS  Google Scholar 

  28. Kemmer M, Dalil H, Biesemans M, Martins JC, Mahieu B, Horn E, de Vos D, Tiekink ERT, Willem R, Gielen M (2000) Dibutyltin perfluoroalkanecarboxylates: synthesis, NMR characterization and in vitro antitumour activity. J Organomet Chem 608:63–70

    Article  CAS  Google Scholar 

  29. Ruisi G, Silvestri A, Lo Giudice MT, Barbieri R, Atassi G, Huber F, Grätz K, Lamartina L (1985) The antitumor activity of di-n-butyltin(IV) glycylglycinate, and the correlation with the structure of dialkyltin(IV) glycylglycinates in solution. J Inorg Biochem 25:229–245

    Article  CAS  Google Scholar 

  30. Calvaresia EC, Hergenrother PJ (2013) Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 4:2319–2333

    Article  Google Scholar 

  31. Nath M, Jairath R, Eng G, Song X, Kumar A (2005) New organotin(IV) ascorbates: synthesis, spectral characterization, biological and potentiometric studies. Spectrochim Acta A 61:77–86

    Article  Google Scholar 

  32. Nath M, Vats M, Roy P (2013) Tri- and diorganotin(IV) complexes of biologically important orotic acid: synthesis, spectroscopic studies, in vitro anti-cancer, DNA fragmentation, enzyme assays and in vivo anti-inflammatory activities. Eur J Med Chem 59:310–321

    Article  CAS  Google Scholar 

  33. Nath M, Vats M, Roy P (2014) Design, spectral characterization, anti-tumor and anti-inflammatory activity of triorganotin(IV) hydroxycarboxylates, apoptosis inducers: in vitro assessment of induction of apoptosis by enzyme, DNA-fragmentation, acridine orange and comet assays. Inorg Chim Acta 423:70–82

    Article  CAS  Google Scholar 

  34. Gielen M, Tiekink ERT (2005) In: Gielen M, Tiekink ERT (ed) Metallotherapeutic drugs and metal-based diagnostic agents. The use of metals in medicine. J Wiley & Sons

  35. BasuBaul TS, Masharing C, Basu S, Rivarola E, Holčapek M, Jirásko R, Lyčka A, de Vos D, Linden A (2006) Synthesis, characterization, cytotoxic activity and crystal structures of tri- and di-organotin(IV) complexes constructed from the β-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}propionate and β-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}propionate skeletons. J Organomet Chem 691:952–965

    Article  CAS  Google Scholar 

  36. Gielen M, Biesemans M, de Vos D, Willem R (2000) Synthesis, characterization and in vitro antitumor activity of di- and triorganotin derivatives of polyoxa- and biologically relevant carboxylic acids. J Inorg Biochem 79:139–145

    Article  CAS  Google Scholar 

  37. Kaluđerović GN, Paschke R, Prashar S, Gómez-Ruiz S (2010) Synthesis, characterization and biological studies of 1-D polymeric triphenyltin(IV) carboxylates. J Organomet Chem 695:1883–1890

    Article  Google Scholar 

  38. Nath M, Yadav R, Gielen M, Dalil H, de Vos D, Eng G (1997) Synthesis, characteristic spectral studies and in vitro antimicrobial and antitumour activities of organotin(IV) complexes of Schiff bases derived from amino-acids. Appl Organomet Chem 11:727–736

    Article  CAS  Google Scholar 

  39. Rehman W, Baloch MK, Badshah A (2008) Synthesis, spectral characterization and bioanalysis of some organotin(IV) complexes. Eur J Med Chem 43:2380–2385

    Article  CAS  Google Scholar 

  40. Badhani B, Kakkar R (2016) In silico studies on potential MCF-7 inhibitors: a combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. J Biomol Struct Dyn 35:1950–1967

    Article  Google Scholar 

  41. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557

    Article  CAS  Google Scholar 

  42. Isuzugawa K, Inoue M, Ogihara Y (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol Pharm Bull 24:1022–1026

    Article  CAS  Google Scholar 

  43. Putten PL (1979) Mandelic acid and urinary tract infections. Antonie Van Leeuwenhoek 45:622–623

    Article  Google Scholar 

  44. Taylor M (1999) Summary of mandelic acid for the improvement of skin conditions. J Cosmet Dermatol 21:26–28

    Google Scholar 

  45. Vogel HJ, Greenberg DM, Hokin LE (1967) In: Greenberg DM (ed) Metabolic pathways. Academic Press, New York

    Google Scholar 

  46. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  48. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  49. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  50. Dhanaraj CJ, Johnson J (2017) DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. Mater Sci Eng C 78:1006–1015

    Article  Google Scholar 

  51. Nishikiori H, Nakamura S, Natori D, Teshima K (2016) Potential levels of metal complexes of 8-hydroxyquinoline. Chem Phys Lett 662:146–151

    Article  CAS  Google Scholar 

  52. Pereira e Silva IM, de Moraes Profirio D, Ferraz de Paiva RE, Lancellotti M, Formiga ALB, Corbi PP (2013) A silver complex with ibuprofen: synthesis, solid state characterization, DFT calculations and antibacterial assays. J Mol Struct 1049:1–6

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C.01, Gaussian Inc., Wallingford

  54. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  55. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (THEOCHEM) 169:41–62

    Article  Google Scholar 

  56. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2009) NBO Version 3.1

  57. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  58. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  60. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  61. Holroyd LF, van Mourik T (2015) Stacking of the mutagenic base analogue 5-bromouracil: energy landscapes of pyrimidine dimers in gas phase and water. Phys Chem Chem Phys 17:30364–30370

    Article  CAS  Google Scholar 

  62. Badhani B, Kakkar R (2017) DFT study of structural and electronic properties of gallic acid and its anions in gas phase and in aqueous solution. Struct Chem 28:1789–1802

    Article  CAS  Google Scholar 

  63. Hilal R, Zaky ZM, Elroby SAK (2004) Electronic structure of orotic acid I. Geometry, conformational preference and tautomerism. J Mol Struct 685:35–42

    Article  CAS  Google Scholar 

  64. Kubica D, Gryff-Keller A (2015) Orotic acid in water solution, a DFT and 13C NMR spectroscopic study. J Phys Chem B 119:5832–5838

    Article  CAS  Google Scholar 

  65. Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  66. Li K, Li M, Xue D (2012) Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution. J Phys Chem A 116:4192–4198

    Article  CAS  Google Scholar 

  67. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  68. Domingo LR, Pérez P (2013) Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org Biomol Chem 11:4350–4358

    Article  CAS  Google Scholar 

  69. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  70. Kakkar R, Bhandari M, Gaba R (2012) Tautomeric transformations and reactivity of alloxan. Comput Theor Chem 986:14–24

    Article  CAS  Google Scholar 

  71. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci 95:11578–11583

    Article  CAS  Google Scholar 

  72. Parr RG, von Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  73. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  74. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (B.B.) thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship. The authors thank Delhi University’s “Scheme to Strengthen Doctoral Research by Providing Funds to Faculty.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Kakkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badhani, B., Kakkar, R. Structural, electronic, and reactivity parameters of some triorganotin(IV) carboxylates: a DFT analysis. Struct Chem 29, 753–763 (2018). https://doi.org/10.1007/s11224-017-1068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1068-y

Keywords

Navigation