Skip to main content
Log in

Theoretical analysis of frontier orbitals, electronic transitions, and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Metal carbonyl complexes, which have been known as effective catalysts since early days, find use in many fields both directly and indirectly. Although the use of metal carbonyl complexes as bio-probe and protein labeling agent due to their unique spectroscopic properties is known, metal carbonyls have recently been used as storage and transport carriers of carbon monoxide. These developments have motivated the synthesis of new metal carbonyl complexes. Despite the difficulties in obtaining prediction for the molecular properties of organometallic compounds, DFT-based calculation programs have been able to gain insight into the structural/electronic properties of inorganic and organic molecules.

In this study, structural, electronic, and reactivity properties of characterized molybdenum and tungsten carbonyl complexes with benzimidazole and imidazoline derivative ligands were investigated using DFT-based calculation program ORCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Szymańska-Buzar T (2006). Coord Chem Rev 250:976–990

    Article  CAS  Google Scholar 

  2. Mula B, Beaumont A, Doyle K, Gallagher L, Rooney D (1999). J Mol Catal 148:23–28

    Article  CAS  Google Scholar 

  3. Nogueira LS, Neves P, Gomes AC, Lavrador P, Cunha-Silva L, Valente AA, Gonçalves IS (2018). RSC Adv 8:16294–16302

    Article  CAS  Google Scholar 

  4. Khalil MMH (2000). Transit Met Chem 25:358–360

    Article  CAS  Google Scholar 

  5. Taher MA, Jarelnabbi SE, Bayoumy BE, El-Medani SM, Ramadan RM (2010). Int J Inorg Chem:1–6

  6. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005). Chem Rev 105:2647–2694

    Article  CAS  PubMed  Google Scholar 

  7. Salmain M, Gunn M, Gorfti A, Top S, Jaouen G (1993). Bioconjug Chem 4:425–433

    Article  CAS  PubMed  Google Scholar 

  8. Hromadová M, Salmain M, Sokolová R, Pospíšil L, Jaouen G (2003). J Organomet Chem 668:17–24

    Article  CAS  Google Scholar 

  9. Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ (2003). Curr Pharm Des 9:2525–2539

    Article  CAS  PubMed  Google Scholar 

  10. Alberto R, Motterlini R (2007). Dalton Trans:1651–1660

  11. Mann BE (2012). Organometallics 31:5728–5735

    Article  CAS  Google Scholar 

  12. Schatzschneider U (2011). Inorg Chim Acta 374:19–23

    Article  CAS  Google Scholar 

  13. Rudolf P, Kanal F, Knorr J, Nagel C, Niesel J, Brixner T, Schatzschneider U, Nuernberger P (2013). J Phys Chem Lett 4:596–602

    Article  CAS  PubMed  Google Scholar 

  14. Rimmer RD, Pierri AE, Ford PC (2012). Coord Chem Rev 256:1509–1519

    Article  CAS  Google Scholar 

  15. Pierri AE, Pallaoro A, Wu G, Ford PC (2012). J Am Chem Soc 134:18197–18200

    Article  CAS  PubMed  Google Scholar 

  16. Brink NG, Folkers K (1950). J Am Chem Soc 72:4442–4443

    Article  CAS  Google Scholar 

  17. Kubeil M, Vernooij RR, Kubeil C, Wood BR, Graham B, Stephan H, Spiccia L (2017). Inorg Chem 56:5941–5952

    Article  CAS  PubMed  Google Scholar 

  18. Walia R, Hedaitullah M, Naaz S, Iqbal K, Lamba HB (2011). IJRPC 1:565–574

    CAS  Google Scholar 

  19. Alamgir M, Black SC, Kumar N (2007). Top Heterocycl Chem 9:87–118

    Article  CAS  Google Scholar 

  20. Üstün E, Özgür A, Coşkun KA, Demir S, Özdemir İ, Tutar Y (2016). J Coord Chem 69:3384–3394

    Article  CAS  Google Scholar 

  21. Üstün E, Özgür A, Oşkun KA, Düşünceli SD, Özdemir İ, Tutar Y (2017). Transit Met Chem 42:331–337

    Article  CAS  Google Scholar 

  22. Kumar JR, Jawahar J, Pathak DP (2006). E-J Chem 3:278–285

    Article  CAS  Google Scholar 

  23. Bansal Y, Silakari O (2012). Bioorganic Med Chem 20:6208–6236

    Article  CAS  Google Scholar 

  24. Head GA, Mayorov DN (2006). Cardiovasc Hematol Agents Med Chem 4:17–32

    Article  CAS  PubMed  Google Scholar 

  25. Üstün E, Koç Ş, Demir S, Özdemir İ (2016). J Organomet Chem 815–816:16–22

    Article  CAS  Google Scholar 

  26. Dardonville C, Rozas I (2004). Med Res Rev 24:639–661

    Article  CAS  PubMed  Google Scholar 

  27. Schlenk M, Ott I, Gust R (2008). J Med Chem 51:7318–7322

    Article  CAS  PubMed  Google Scholar 

  28. Maeda S, Koizumi TA, Yamamoto T, Tanaka K, Kanbara T (2007). J Organomet Chem 692:5495–5500

    Article  CAS  Google Scholar 

  29. Liu H, Du DM (2009). Adv Synth Catal 351:489–519

    Article  CAS  Google Scholar 

  30. Özdemir İ, Şahin N, Gürbüz N, Demir S, Gök Y, Çetinkaya B, Çetinkaya E (2005). Synth React Inorg Met Nano-Metal Chem 35:541–544

    Article  CAS  Google Scholar 

  31. Üstün E, Demir SA, Coşkun F, Kaloğlu M, Şahin O, Büyükgüngör O, Özdemir İ (2016). J Mol Struct 1123:433–440

    Article  CAS  Google Scholar 

  32. Neese F (2012). Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  33. Zobi F, Blacque O (2011). Dalton Trans 40:4994–5001

    Article  CAS  PubMed  Google Scholar 

  34. Vummaleti SVC, Branduardi D, Masetti M, Vivo M, Motterlini R, Cavalli A (2012). Chem Eur J 18:9267–9275

    Article  CAS  PubMed  Google Scholar 

  35. Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Scapens D, Motterlini R (2011). Dalton Trans 40:4230–4235

    Article  CAS  PubMed  Google Scholar 

  36. Geerlings P, De Proft F, Langenaeker W (2003). Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  37. Buchanan MK, Needham CN, Neill NE, White MC, Kelly CB, Mastro-Kishton K, Chauvigne-Hines LM, Goodwin TJ, McIver AL, Bartolotti LJ, Frampton AR, Bourdelais AJ, Varadarajan S (2017). Biochemistry 56:421–440

    Article  CAS  PubMed  Google Scholar 

  38. Fry NL, Mascharak PK (2012). Dalton Trans 41:4726–4735

    Article  CAS  PubMed  Google Scholar 

  39. Gonzales MA, Mascharak PK (2014). J Inorg Biochem 133:127–135

    Article  CAS  PubMed  Google Scholar 

  40. Chakraborty I, Carrington SJ, Mascharak PK (2014). Acc Chem Res 47:2603–2611

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty I, Carrington SJ, Mascharak PK (2014). ChemMedChem 9:1266–1274

    Article  CAS  PubMed  Google Scholar 

  42. Çetinkaya B, Çetinkaya E, Hitchcock PB, Lappert F (1997). J Chem Soc Dalton Trans:1359–1362

  43. Pantazis DA, Chen XY, Landis CR, Neese F (2008). J Chem Theory Comput 4:908–919

    Article  CAS  PubMed  Google Scholar 

  44. Neese F (2006). J Biol Inorg Chem 11:702–711

    Article  CAS  PubMed  Google Scholar 

  45. Neese F (2009). Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  46. Van Lenthe E, Baerends EJ, Snijders JG (1994). J Chem Phys 101:9783–9792

    Article  Google Scholar 

  47. Weigend F, Ahlrichs R (2005). Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  48. Goerigk L, Grimme S (2011). Phys Chem Chem Phys 13:6670–6688

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Support of Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No 112T320) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvan Üstün.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üstün, E., Düşünceli, S.D. & Özdemir, I. Theoretical analysis of frontier orbitals, electronic transitions, and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study. Struct Chem 30, 769–775 (2019). https://doi.org/10.1007/s11224-018-1231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1231-0

Keywords

Navigation