Skip to main content

Advertisement

Log in

Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Based on the mechanism of action of PKC-θ, the inhibition of this enzyme is considered a potential target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and psoriasis. In the present study, 57 structurally diverse tricyclic triazinone analogues as potential PKC-θ inhibitors has been taken into consideration for QSAR analysis through Monte Carlo optimization. QSAR models are developed using the balance of correlation method in the CORAL software with two target functions (TF1 and TF2). The models constructed with IIC are found more robust and authentic. The established QSAR model with best \( {R}_{\mathrm{calibration}}^2 \) = 0.9653 for split 3 is considered the topmost model. The predictabilities of the recommended QSAR model are assessed through various statistical parameters. The outlier of each model is also identified using the applicability domain (AD). The common mechanistic interpretation of the increasing and decreasing attributes has been extracted by evaluating the correlation weights of diverse structural attributes obtained in three Monte Carlo optimization runs from two splits, i.e., split 3 and 4. In the last, the result of mechanistic interpretation is validated by performing the docking studies of compounds PKC03, PKC07, PKC16, PKC25, and PKC56 in the experimental structure of protein kinase C-θ (PDB ID: 4Q9Z). The numerical value of the correlation coefficient between calculated activity and binding affinity is found 0.9597. Hence, the developed QSAR models are descriptive and predictive in nature and the results are in sound agreement with the experimental observations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zanin-Zhorov A, Kumari S, Hippen KL, Merkel SC, MacMillan ML, Blazar BR, Dustin ML (2017) Human in vitro-induced regulatory T cells display Dlgh1dependent and PKC-theta restrained suppressive activity. Sci Rep 7(1):4258. https://doi.org/10.1038/s41598-017-04053-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Han C, Lei D, Liu L, Xie S, He L, Wen S, Zhou H, Ma T, Li S (2020) Morphine induces the differentiation of T helper cells to Th2 effector cells via the PKC-theta-GATA3 pathway. Int Immunopharmacol 80:106133. https://doi.org/10.1016/j.intimp.2019.106133

    Article  CAS  PubMed  Google Scholar 

  3. von Essen MR, Kongsbak M, Levring TB, Hansen AK, Boding L, Lauritsen JP, Woetmann A, Baier G, Odum N, Bonefeld CM, Geisler C (2013) PKC-theta exists in an oxidized inactive form in naive human T cells. Eur J Immunol 43(6):1659–1666. https://doi.org/10.1002/eji.201243140

    Article  CAS  Google Scholar 

  4. Wachowicz K, Baier G (2014) Protein kinase Ctheta: the pleiotropic T-cell signalling intermediate. Biochem Soc Trans 42(6):1512–1518. https://doi.org/10.1042/BST20140179

    Article  CAS  PubMed  Google Scholar 

  5. Cole DC, Asselin M, Brennan A, Czerwinski R, Ellingboe JW, Fitz L, Greco R, Huang X, Joseph-McCarthy D, Kelly MF, Kirisits M, Lee J, Li Y, Morgan P, Stock JR, Tsao DH, Wissner A, Yang X, Chaudhary D (2008) Identification, characterization and initial hit-to-lead optimization of a series of 4-arylamino-3-pyridinecarbonitrile as protein kinase C theta (PKCtheta) inhibitors. J Med Chem 51(19):5958–5963. https://doi.org/10.1021/jm800214a

    Article  CAS  PubMed  Google Scholar 

  6. Sakowicz-Burkiewicz M, Nishanth G, Helmuth U, Drogemuller K, Busch DH, Utermohlen O, Naumann M, Deckert M, Schluter D (2008) Protein kinase C-theta critically regulates the proliferation and survival of pathogen-specific T cells in murine listeriosis. J Immunol 180(8):5601–5612. https://doi.org/10.4049/jimmunol.180.8.5601

    Article  CAS  PubMed  Google Scholar 

  7. Solomou EE, Juang YT, Tsokos GC (2001) Protein kinase C-theta participates in the activation of cyclic AMP-responsive element-binding protein and its subsequent binding to the -180 site of the IL-2 promoter in normal human T lymphocytes. J Immunol 166(9):5665–5674. https://doi.org/10.4049/jimmunol.166.9.5665

    Article  CAS  PubMed  Google Scholar 

  8. Thuille N, Siegmund K, Klepsch V, Schorgenhuber J, Danklmaier S, Leitges M, Baier G (2019) Loss-of-function phenotype of a PKCtheta(T219A) knockin mouse strain. Cell Commun Signal 17(1):141. https://doi.org/10.1186/s12964-019-0466-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cywin CL, Dahmann G, Prokopowicz 3rd AS, Young ER, Magolda RL, Cardozo MG, Cogan DA, Disalvo D, Ginn JD, Kashem MA, Wolak JP, Homon CA, Farrell TM, Grbic H, Hu H, Kaplita PV, Liu LH, Spero DM, Jeanfavre DD, O'Shea KM, White DM, Woska Jr JR, Brown ML (2007) Discovery of potent and selective PKC-theta inhibitors. Bioorg Med Chem Lett 17(1):225–230. https://doi.org/10.1016/j.bmcl.2006.09.056

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka Y, Altman A (2002) T cell signaling: protein kinase Cθ the immunological synapse and characterization of SLAT a novel T helper 2-specific adapter protein. Allergol Int 51 (3):167–174. https://doi.org/10.1046/j.1440-1592.2002.00261.x

  11. Niu C, Boschelli DH, Tumey LN, Bhagirath N, Subrath J, Shim J, Wang Y, Wu B, Eid C, Lee J, Yang X, Brennan A, Chaudhary D (2009) First generation 5-vinyl-3-pyridinecarbonitrile PKCtheta inhibitors. Bioorg Med Chem Lett 19(20):5829–5832. https://doi.org/10.1016/j.bmcl.2009.08.086

    Article  CAS  PubMed  Google Scholar 

  12. Salek-Ardakani S, So T, Halteman BS, Altman A, Croft M (2004) Differential regulation of Th2 and Th1 lung inflammatory responses by protein kinase C theta. J Immunol 173(10):6440–6447. https://doi.org/10.4049/jimmunol.173.10.6440

    Article  CAS  PubMed  Google Scholar 

  13. Healy AM, Izmailova E, Fitzgerald M, Walker R, Hattersley M, Silva M, Siebert E, Terkelsen J, Picarella D, Pickard MD, LeClair B, Chandra S, Jaffee B (2006) PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol 177(3):1886–1893. https://doi.org/10.4049/jimmunol.177.3.1886

    Article  CAS  PubMed  Google Scholar 

  14. Salek-Ardakani S, So T, Halteman BS, Altman A, Croft M (2005) Protein kinase Ctheta controls Th1 cells in experimental autoimmune encephalomyelitis. J Immunol 175(11):7635–7641. https://doi.org/10.4049/jimmunol.175.11.7635

    Article  CAS  PubMed  Google Scholar 

  15. Tan SL, Zhao J, Bi C, Chen XC, Hepburn DL, Wang J, Sedgwick JD, Chintalacharuvu SR, Na S (2006) Resistance to experimental autoimmune encephalomyelitis and impaired IL-17 production in protein kinase C theta-deficient mice. J Immunol 176(5):2872–2879. https://doi.org/10.4049/jimmunol.176.5.2872

    Article  CAS  PubMed  Google Scholar 

  16. Nagahama K, Ogawa A, Shirane K, Shimomura Y, Sugimoto K, Mizoguchi A (2008) Protein kinase C theta plays a fundamental role in different types of chronic colitis. Gastroenterology 134(2):459–469. https://doi.org/10.1053/j.gastro.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Dushin RG, Nittoli T, Ingalls C, Boschelli DH, Cole DC, Wissner A, Lee J, Yang X, Morgan P, Brennan A, Chaudhary D (2009) Synthesis and PKCtheta inhibitory activity of a series of 4-indolylamino-5-phenyl-3-pyridinecarbonitriles. Bioorg Med Chem Lett 19(9):2461–2463. https://doi.org/10.1016/j.bmcl.2009.03.053

    Article  CAS  PubMed  Google Scholar 

  18. Tumey LN, Bhagirath N, Brennan A, Brooijmans N, Lee J, Yang X, Boschelli DH (2009) 5-Vinyl-3-pyridinecarbonitrile inhibitors of PKCtheta: optimization of enzymatic and functional activity. Bioorg Med Chem 17(23):7933–7948. https://doi.org/10.1016/j.bmc.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Basak SC, Vracko MG (2020) Parsimony principle and its proper use/ application in computer-assisted drug design and QSAR. Curr Comput Aided Drug Des 16(1):1–5. https://doi.org/10.2174/157340991601200106122854

    Article  CAS  PubMed  Google Scholar 

  20. Veeravarapu H, Malkhed V, Mustyala KK, Vadija R, Malikanti R, Vuruputuri U, Muthyala MKK (2020) Structure-based drug design, synthesis and screening of MmaA1 inhibitors as novel anti-TB agents. Mol Divers. https://doi.org/10.1007/s11030-020-10107-0

  21. Senthil R, Sakthivel M, Usha S (2020) Structure-based drug design of peroxisome proliferator-activated receptor gamma inhibitors: ferulic acid and derivatives. J Biomol Struct Dyn:On Line Published. https://doi.org/10.1080/07391102.2020.1740790

  22. Sadhasivam A, Nagarajan H, Umashankar V (2020) Structure-based drug target prioritisation and rational drug design for targeting Chlamydia trachomatis eye infections. J Biomol Struct Dyn 38(11):3131–3143. https://doi.org/10.1080/07391102.2019.1652691

    Article  CAS  PubMed  Google Scholar 

  23. Kumar P, Kumar A (2020) CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index. Chemometr Intel Lab Syst 200:103982. https://doi.org/10.1016/j.chemolab.2020.103982

  24. Kumar A, Sindhu J, Kumar P (2020) In-silico identification of fingerprint of pyrazolyl sulfonamide responsible for inhibition of N-myristoyltransferase using Monte Carlo method with index of ideality of correlation. J Biomol Struct Dyn:On Line Published. https://doi.org/10.1080/07391102.2020.1784286

  25. Puratchikody A, Prabu SL, Umamaheswari A (2019) Computer applications in drug discovery and development. Advances in medical technologies and clinical practice (AMTCP) book series. Medical Information Science Reference, Hershey, PA

  26. Worachartcheewan A, Mandi P, Prachayasittikul V, Toropova AP, Toropov AA, Nantasenamat C (2014) Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemometr Intel Lab Syst 138:120–126. https://doi.org/10.1016/j.chemolab.2014.07.017

    Article  CAS  Google Scholar 

  27. Doucet J-P, Panaye A (2010) Three dimensional QSAR : applications in pharmacology and toxicology. QSAR in environmental and health sciences. CRC Press, Boca Raton

  28. Qi R, Pan Y, Cao J, Jia Z, Jiang J (2020) The cytotoxicity of nanomaterials: modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR. Chemosphere 249:126175. https://doi.org/10.1016/j.chemosphere.2020.126175

    Article  CAS  PubMed  Google Scholar 

  29. Mondal D, Ghosh K, Baidya ATK, Gantait AM, Gayen S (2020) Identification of structural fingerprints for in vivo toxicity by using Monte Carlo based QSTR modeling of nitroaromatics. Toxicol Mechan Methods 30 (4):257–265. https://doi.org/10.1080/15376516.2019.1709238

  30. Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S (2020) Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 38 (6):1683–1696. https://doi.org/10.1080/07391102.2019.1615000

  31. Ahmadi S, Ghanbari H, Lotfi S, Azimi N (2020) Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method. Mol Divers. https://doi.org/10.1007/s11030-019-10026-9

  32. Toropov AA, Toropova AP, Selvestrel G, Benfenati E (2019) Idealization of correlations between optimal simplified molecular input-line entry system-based descriptors and skin sensitization. SAR QSAR Environ Res 30(6):447–455. https://doi.org/10.1080/1062936X.2019.1615547

    Article  CAS  PubMed  Google Scholar 

  33. Toropova MA, Veselinovic AM, Veselinovic JB, Stojanovic DB, Toropov AA (2015) QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Comput Biol Chem 59 Pt A:126-130. https://doi.org/10.1016/j.compbiolchem.2015.09.009

  34. Toropova AP, Schultz TW, Toropov AA (2016) Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: a case of benzene derivatives. Environ Toxicol Pharmacol 42:135–145. https://doi.org/10.1016/j.etap.2016.01.010

  35. Toropova AP, Toropov AA, Veselinovic JB, Miljkovic FN, Veselinovic AM (2014) QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method. Eur J Med Chem 77:298–305. https://doi.org/10.1016/j.ejmech.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  36. Ibezim E, Duchowicz PR, Ortiz EV, Castro EA (2012) QSAR on aryl-piperazine derivatives with activity on malaria. Chemometr Intel Lab Syst 110(1):81–88. https://doi.org/10.1016/j.chemolab.2011.10.002

    Article  CAS  Google Scholar 

  37. Kumar A, Manisha, Bagri K, Kumar P (2020) Use of graph based descriptors for determination of structural features causing modulation of fructose-1,6-bisphosphatase. Drug Res (Stuttg) 70 (5):226–232. https://doi.org/10.1055/a-1138-8725

  38. Kumar P, Kumar A, Sindhu J (2019) Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR. SAR QSAR Environ Res 30 (2):63–80. https://doi.org/10.1080/1062936X.2018.1564067

  39. Kumar P, Kumar A, Sindhu J (2019) In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method. SAR QSAR Environ Res 30(8):525–541. https://doi.org/10.1080/1062936X.2019.1629998

    Article  CAS  PubMed  Google Scholar 

  40. Toropova AP, Toropov AA, Carnesecchi E, Benfenati E, Dorne JL (2020) The index of ideality of correlation: models for flammability of binary liquid mixtures. Chem Pap 74(2):601–609. https://doi.org/10.1007/s11696-019-00903-w

    Article  CAS  Google Scholar 

  41. Kumar A, Kumar P (2020) Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in Monte Carlo optimization. Arch Toxicol 94 (9):3069–3086. https://doi.org/10.1007/s00204-020-02828-w

  42. Ahmadi S (2020) Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Chemosphere 242:125192. https://doi.org/10.1016/j.chemosphere.2019.125192

    Article  CAS  PubMed  Google Scholar 

  43. Kumar P, Kumar A, Sindhu J, Lal S (2019) QSAR models for nitrogen containing monophosphonate and bisphosphonate derivatives as human farnesyl pyrophosphate synthase inhibitors based on Monte Carlo method. Drug Res (Stuttg) 69 (3):159–167. https://doi.org/10.1055/a-0652-5290

  44. Achary PGR, Toropova AP, Toropov AA (2019) Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Res Int 122:40–46. https://doi.org/10.1016/j.foodres.2019.03.067

    Article  CAS  PubMed  Google Scholar 

  45. Meng L, Feng K, Ren Y (2018) Molecular modelling studies of tricyclic triazinone analogues as potential PKC-θ inhibitors through combined QSAR, molecular docking and molecular dynamics simulations techniques. J Taiwan Inst Chem Eng 91:155–175. https://doi.org/10.1016/j.jtice.2018.06.017

    Article  CAS  Google Scholar 

  46. George DM, Breinlinger EC, Argiriadi MA, Zhang Y, Wang J, Bansal-Pakala P, Duignan DB, Honore P, Lang Q, Mittelstadt S, Rundell L, Schwartz A, Sun J, Edmunds JJ (2015) Optimized protein kinase Ctheta (PKCtheta) inhibitors reveal only modest anti-inflammatory efficacy in a rodent model of arthritis. J Med Chem 58(1):333–346. https://doi.org/10.1021/jm5013006

    Article  CAS  PubMed  Google Scholar 

  47. George DM, Breinlinger EC, Friedman M, Zhang Y, Wang J, Argiriadi M, Bansal-Pakala P, Barth M, Duignan DB, Honore P, Lang Q, Mittelstadt S, Potin D, Rundell L, Edmunds JJ (2015) Discovery of selective and orally bioavailable protein kinase C theta (PKCtheta) inhibitors from a fragment hit. J Med Chem 58(1):222–236. https://doi.org/10.1021/jm500669m

    Article  CAS  PubMed  Google Scholar 

  48. Marvin-Sketch-v.14.11.17.0 (2014). ChemAxon, XhemAxon KFT. Budapest, Hungary

  49. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3 (1):33. https://doi.org/10.1186/1758-2946-3-33

  50. Veselinovic JB, Nikolic GM, Trutic NV, Zivkovic JV, Veselinovic AM (2015) Monte Carlo QSAR models for predicting organophosphate inhibition of acetycholinesterase. SAR QSAR Environ Res 26(6):449–460. https://doi.org/10.1080/1062936X.2015.1049665

    Article  CAS  PubMed  Google Scholar 

  51. Gissi A, Toropov AA, Toropova AP, Nicolotti O, Carotti A, Benfenati E (2014) Building up QSAR model for toxicity of psychotropic drugs by the Monte Carlo method. Struct Chem 25(4):1067–1073. https://doi.org/10.1007/s11224-013-0380-4

    Article  CAS  Google Scholar 

  52. Kumar A, Chauhan S (2017) Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors. SAR QSAR Environ Res 28(3):179–197. https://doi.org/10.1080/1062936X.2017.1293729

    Article  CAS  PubMed  Google Scholar 

  53. Manisha CS, Kumar P, Kumar A (2019) Development of prediction model for fructose- 1,6- bisphosphatase inhibitors using the Monte Carlo method. SAR QSAR Environ Res 30(3):145–159. https://doi.org/10.1080/1062936X.2019.1568299

    Article  CAS  PubMed  Google Scholar 

  54. Toropova AP, Toropov AA (2019) QSPR and nano-QSPR: what is the difference? J Mol Struct 1182:141–149. https://doi.org/10.1016/j.molstruc.2019.01.040

  55. Toropov AA, Toropova AP (2017) The index of ideality of correlation: a criterion of predictive potential of QSPR/QSAR models? Mutat Res Genet Toxicol Environ Mutagen 819:31–37. https://doi.org/10.1016/j.mrgentox.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  56. Toropov AA, Toropova AP (2018) Predicting cytotoxicity of 2-Phenylindole derivatives against breast cancer cells using index of ideality of correlation. Anticancer Res 38(11):6189–6194. https://doi.org/10.21873/anticanres.12972

    Article  CAS  PubMed  Google Scholar 

  57. Environment-directorate guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. Organisation for Economic Co-operation and Development. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2. Accessed 07 July 2020

  58. Aher RB, Roy K (2017) Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies. SAR QSAR Environ Res 28 (5):390–414. https://doi.org/10.1080/1062936X.2017.1326401

  59. Bhayye SS, Roy K, Saha A (2016) Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAOB inhibitors. SAR QSAR Environ Res 27(3):183–202. https://doi.org/10.1080/1062936X.2015.1136840

    Article  CAS  PubMed  Google Scholar 

  60. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/s1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  61. Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41(1):186–195. https://doi.org/10.1021/ci000066d

    Article  CAS  PubMed  Google Scholar 

  62. Schuurmann G, Ebert RU, Chen J, Wang B, Kuhne R (2008) External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. J Chem Inf Model 48(11):2140–2145. https://doi.org/10.1021/ci800253u

    Article  CAS  PubMed  Google Scholar 

  63. Pratim Roy P, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14(5):1660–1701. https://doi.org/10.3390/molecules14051660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34 (12):1071–1082. https://doi.org/10.1002/jcc.23231

  65. Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56 (6):1127–1131. https://doi.org/10.1021/acs.jcim.6b00088

  66. Toropova AP, Toropov AA (2019) The index of ideality of correlation: improvement of models for toxicity to algae. Nat Prod Res 33(15):2200–2207. https://doi.org/10.1080/14786419.2018.1493591

    Article  CAS  PubMed  Google Scholar 

  67. Toropov AA, Toropova AP (2019) Use of the index of ideality of correlation to improve predictive potential for biochemical endpoints. Toxicol Mechan Methods 29(1):43–52. https://doi.org/10.1080/15376516.2018.1506851

    Article  CAS  Google Scholar 

  68. Duhan M, Singh R, Devi M, Sindhu J, Bhatia R, Kumar A, Kumar P (2019) Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as alpha-amylase inhibitor. J Biomol Struct Dyn:1–17. https://doi.org/10.1080/07391102.2019.1704885

  69. Kumar P, Kumar A (2020) Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method. J Biomol Struct Dyn 38(11):3296–3306. https://doi.org/10.1080/07391102.2019.1656109

    Article  CAS  PubMed  Google Scholar 

  70. Roy PP, Roy K (2009) QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chem Biol Drug Des 73(4):442–455. https://doi.org/10.1111/j.1747-0285.2009.00791.x

    Article  CAS  PubMed  Google Scholar 

  71. Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52(2):396–408. https://doi.org/10.1021/ci200520g

    Article  CAS  PubMed  Google Scholar 

  72. Golbraikh A, Wang XS, Zhu H, Tropsha A (2012) Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. In: Leszczynski J (ed) Handbook of computational chemistry. Springer Netherlands, Dordrecht, pp 1309–1342. https://doi.org/10.1007/978-94-007-0711-5_37

    Chapter  Google Scholar 

  73. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701. https://doi.org/10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  74. Nimbhal M, Bagri K, Kumar P, Kumar A (2020) The index of ideality of correlation: a statistical yardstick for better QSAR modeling of glucokinase activators. Struct Chem 31(2):831–839. https://doi.org/10.1007/s11224-019-01468-w

    Article  CAS  Google Scholar 

  75. Toropova AP, Toropov AA (2019) Does the index of ideality of correlation detect the better model correctly? Mol Inform 38(8–9):e1800157. https://doi.org/10.1002/minf.201800157

    Article  CAS  PubMed  Google Scholar 

  76. Rucker C, Rucker G, Meringer M (2007) y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47 (6):2345–2357. https://doi.org/10.1021/ci700157b

  77. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometr Intel Lab Syst 107 (1):194–205. https://doi.org/10.1016/j.chemolab.2011.03.011

  78. Kumar P, Kumar A (2018) Monte Carlo method based QSAR studies of Mer kinase inhibitors in compliance with OECD principles. Drug Res (Stuttg) 68 (4):189–195. https://doi.org/10.1055/s-0043-119288

  79. Dassault-Systèmes-BIOVIA (2019). Discovery Studio, San Diego: Dassault Systèmes. Discovery Studio, San Diego: Dassault Systèmes.,

Download references

Acknowledgments

The authors are thankful to Dr. Andrey A. Toropov and Dr. Alla P. Toropova for providing the CORAL software. The authors are also thankful to their respective universities for providing the infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

Authors have done equivalent contributions to this work.

Corresponding author

Correspondence to Parvin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, P. Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking. Struct Chem 32, 149–165 (2021). https://doi.org/10.1007/s11224-020-01629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01629-2

Keywords

Navigation