Skip to main content
Log in

Conformational analysis and quantum descriptors of two bifonazole derivatives of immense anti-tuber potential by using vibrational spectroscopy and molecular docking studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

1-[([1,1I-Biphenyl]-4-yl](phenyl)methyl]-1H-imidazolium-2,5-dichloro-3,6-dihydroxy-cyclohexa-2,5-diene-1,4-dione (BCAA) and 1-[([1,1I-Biphenyl]-4-yl](phenyl)methyl]-1H-imidazolium-4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile (BDDQ) were synthesized and characterized using spectral analysis. The fundamental structural aspects of these derivatives have been examined based on optimized geometry, spectroscopic behavior, intermolecular interaction, chemical reactivity, and molecular docking analysis. The most stable minimum energy conformer of the title molecules was identified by potential energy surface scan along the rotational bonds. Accordingly, global and local chemical reactivity descriptors were investigated. The wavenumber downshift of different modes is noted. Title molecules exhibit inhibitory activity against different receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Supplementary material is available with this article.

References

  1. Lackner TE, Clissold SP (1989) Bifonazole: a review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs 38:204–225. https://doi.org/10.2165/00003495-198938020-00004

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay GM, Susanne MC, James SM, John M, John WM, Ragnar SN, David LP, Michael AP (2010) Kucer’s the use of antibioticssixth edn. CRC Press, Florida

    Google Scholar 

  3. Betty W, Duncan W, Bernard H (2011) Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother 55:4436–4439. https://doi.org/10.1128/AAC.00144-11

    Article  CAS  Google Scholar 

  4. Adriana PT (2010) Havard’s nursing guide to drugseighth edn. Elsevier, Chatswood

    Google Scholar 

  5. Imran WS, Zahid Z (2013) An RP-HPLC method developed for determination of bifonazole in pharmaceutical formulation. Bull Pharm Med Sci 1:12–15

    Google Scholar 

  6. Ferreyra CF, Ortiz CS (2005) Simultaneous determination of bifonazole and tinctures of calendula flower in pharmaceutical creams by reversed phase liquid chromatography. J AOAC Int 88:1649–1654. https://doi.org/10.1093/jaoac/88.6.1649

    Article  CAS  PubMed  Google Scholar 

  7. Di Pietra AM, Cavrini V, Andrisano V, Gatti R (1992) HPLC analysis of imidazole antimycotic drugs in pharmaceutical formulations. J Pharm Biomed Anal 10:873–879. https://doi.org/10.1016/0731-7085(91)80094-P

    Article  PubMed  Google Scholar 

  8. Cudina OA, Comor MI, Jankovic IA (2005) Simultaneous determination of bifonazole and benzyl alcohol in pharmaceutical formulations by reverse phase HPLC. Chromatographia 61:415–418. https://doi.org/10.1365/s10337-005-0524-9

    Article  CAS  Google Scholar 

  9. Popovic G, Cakar M, Agbaba D (2003) Determination of bifonazole in creams containing methyl and propyl p-hydroxybenzoate by derivative spectrophotometric method. J Pharm Biomed Anal 33:131–136. https://doi.org/10.1016/S0731-7085(03)00228-0

    Article  CAS  PubMed  Google Scholar 

  10. Sayad IWI, Imran T (2013) First order derivative spectrophotometric method developed and validated for estimation of bifonazole in bulk drug and pharmaceutical formulations. Int J Pharm Res All Sci 2:60–64 Corpus ID: 53371623

    Google Scholar 

  11. Ekiert RJ, Krzek J (2009) Determination of azole antifungal medicines using zero order and derivative UV spectrophotometry. Acta Pol Pharm 66:19–24

    CAS  PubMed  Google Scholar 

  12. Bonazzi D, Cavrini V, Gatti R, Boselli E, Caboni M (1998) Determination of imidazole antimycotics in creams by supercritical fluid extraction and derivative UV spectroscopy. J Pharm Biomed Anal 18:235–240. https://doi.org/10.1016/S0731-7085(98)00165-4

    Article  CAS  PubMed  Google Scholar 

  13. Vladimirov S, Jasmina B, Agbaba D, Zivanov-Stakic D (1993) Spectrophotometric determination of bifonazole in pharmaceutical formulations using bromophenol blue. Il Farmaco 48:1007–1014 http://farfar.pharmacy.bg.ac.rs/handle/123456789/105

    CAS  Google Scholar 

  14. Ismail NBS, Narayana B, Divya K (2016) Validated spectrophotometric methods for the determination of bifonazole in pharmaceuticals by charge transfer complexation. Journal of the Association of Arab Universities for Basic and Applied Sciences 19:8–14. https://doi.org/10.1016/j.jaubas.2014.07.002

    Article  Google Scholar 

  15. Shahada L, Mostafa A, Nour E, Bazzi HS (2009) Synthesis, spectroscopic, thermal and structural investigations of charge transfer complexes of 4,4′-trimethylenedipiperidine with chloranil, TBCHD, DDQ, TCNQ and iodine. J Mol Struct 933:1–7. https://doi.org/10.1016/j.molstruc.2009.05.056

    Article  CAS  Google Scholar 

  16. Refat MS, El-Zayat LA, Yesilel OZ (2010) Spectroscopic characterization of charge-transfer complexes of morpholine with chloranilic and picric acids in organic media: Crystal structure of bis(morpholinium 2,4,6-trinitrocyclohexanolate). Spectrochim Acta 75:745–752. https://doi.org/10.1016/j.saa.2009.11.049

    Article  CAS  Google Scholar 

  17. Pawlukojc A, Bator G, Sobczyk L, Grech E, Nowicka-Scheibe J (2003) Inelastic neutron scattering, Raman, infrared and DFT theoretical studies on chloranilic acid. J Phys Org Chem 16:709–714. https://doi.org/10.1002/poc.633

    Article  CAS  Google Scholar 

  18. Ishida H, Kashino S (2001) 1:2 complexes of chloranilic acid with pyrazole and imidazole and the acetonitrile solvate of a 1:1 complex with imidazole. Acta Crystallogr C 57:476–479. https://doi.org/10.1107/S0108270101000944

    Article  CAS  PubMed  Google Scholar 

  19. Nihei TA, Ishimaru S, Ishida H, Ishihara H, Ikeda R (2000) Hydrogen transfer in hydrogen bonded chloranilic acid studied by 35Cl NQRI – a 1:2 complex with 1,4-diazine. Chem Phys Lett 329:7–14. https://doi.org/10.1016/S0009-2614(00)00985-4

    Article  CAS  Google Scholar 

  20. Hosna S, Janzen DE, Mary YS, Resmi KS, Thomas R, Mohamed R, Wajda S (2018) Molecular structure, spectroscopic, dielectric and thermal study, nonlinear optical properties, natural bond orbital, HOMO-LUMO and molecular docking analysis of (C6Cl2O4)(C10H14N2F)2.2H2O. Spectrochim Acta 204:328–339. https://doi.org/10.1016/j.saa.2018.06.062

    Article  CAS  Google Scholar 

  21. Zhang M, Wang Y, Zhang H, Cao J, Fei Z, Wang Y (2018) Impact of the alkyl chain length on binding of imidazolium-based ionic liquids to bovine serum albumin. Spectrochim Acta 196:323–333. https://doi.org/10.1016/j.saa.2018.02.040

    Article  CAS  Google Scholar 

  22. Bubalo MC, Radosevic K, Srcek VG, Das RN, Popelierc P, Roy K (2015) Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: preliminary QSTR modeling using regression and classification based approaches. Ecotoxicol Environ Saf 112:22–28. https://doi.org/10.1016/j.ecoenv.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  23. Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Ionic liquids for energy, materials and medicine. Chem Commun 50:9228–9250. https://doi.org/10.1039/C4CC02021A

    Article  CAS  Google Scholar 

  24. Panaj SK, Srivastava N, Srivastava J, Prasad NE, Noothalapati H, Shigeto S, Saha S Evidence of C---F-P and aromatic π---F-P weak interactions in imidazolium ionic liquids and its consequences. Spectrochim Acta. https://doi.org/10.1016/j.saa.2017.12.048

  25. Wendler K, Zahn S, Dommert F, Berger R, Holm C, Kirchner B, Delle Site L (2011). J Chem Theory Comput 7:3040–3044. https://doi.org/10.1021/ct200375v

    Article  CAS  PubMed  Google Scholar 

  26. Meena K, Muthu K, Meenatchi V, Rajasekar M, Bhagannarayana G, Meenakshisundaram SP (2014) Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals. Spectrochim Acta 124:663–669. https://doi.org/10.1016/j.saa.2014.01.072

    Article  CAS  Google Scholar 

  27. Ma HL, Jin WJ, Xi L, Dong ZJ (2009) Investigation on solvation and protonation of meso-tetrakis(p-sulfonatophenyl)porphyrin in imidazolium-based ionic liquids by spectroscopic methods. Spectrochim Acta 74:502–508. https://doi.org/10.1016/j.saa.2009.06.057

    Article  CAS  Google Scholar 

  28. do Nascimento GM, do Pim WD, Reis DO, Simoes TRG, Pradie NA, Stumpf HO (2015) Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies. Spectrochim Acta 142:303–310. https://doi.org/10.1016/j.saa.2015.02.012

    Article  CAS  Google Scholar 

  29. Pipaliya BV, Chakraborti AK (2017) Cross-dehydrogenative coupling of heterocyclic scaffolds with unfunctionalized aroyl surrogates by palladium(II) catalyzed C(sp2)-H aroylation through organocatalytic dioxygen activation. J Organomet Chem 82:3767–3780. https://doi.org/10.1021/acs.joc.7b00226

    Article  CAS  Google Scholar 

  30. Selvam C, Jachak SM, Thilagavathi R, Chakraborti AK (2005) Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett 15:1793–1797. https://doi.org/10.1016/j.bmcl.2005.02.039

    Article  CAS  PubMed  Google Scholar 

  31. Kaushik AC, Kumar S, Wei DQ, Sahi S (2018) Structure based virtual screening studies to identify novel potential compounds for GPR142 and their relative dynamic analysis for study of type 2 diabetes. Front Chem 6:23. https://doi.org/10.3389/fchem.2018.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaushik AC, Gautam D, Nangraj AS, Wei DQ, Sahi S (2019) Protection of primary dopaminergic midbrain neurons through impact of small molecules using virtual screening of GPR139 supported by molecular dynamics simulation and system biology. Interdiscip Sci 11:247–257. https://doi.org/10.1007/s12539-019-00334-x

    Article  CAS  PubMed  Google Scholar 

  33. Varghese GK, Abraham R, Chandran NN, Habtemariam S (2019) Identification of lead molecules in Garcinia mangostana L. Against pancreatic cholesterol esterase activity: An in silico approach. Interdiscip Sci 11:170–179. https://doi.org/10.1007/s12539-017-0252-5

    Article  CAS  PubMed  Google Scholar 

  34. Kommi DN, Jadhavar PS, Kumar D, Chakraborti AK (2013) “All-water” one pot diverse synthesis of 1,2-disubstituted benzimidazoles: hydrogen bond driven synergistic electrophile-nucleophile dual activation by water. Green Chem 15:798–810. https://doi.org/10.1039/C3GC37004F

    Article  CAS  Google Scholar 

  35. Azizi N, Ahooie TS, Hashemi MM (2017) Multicomponent reactions in deep eutectic solvent: an efficient strategy to synthesize multisubstituted cyclohexa-1,3-dienamines. J Mol Liq 246:221–224. https://doi.org/10.1016/j.molliq.2017.09.049

    Article  CAS  Google Scholar 

  36. Bielenica A, Beegum S, Mary YS, Mary YS, Thomas R, Armakovic S, Armakovic SJ, Madeddu S, Struga M, Van Alsenoy C (2020) Experimental and computational analysis of 1-(4-chloro-3-nitrophenyl)-3-(3,4-dichlorophenyl)thiourea. J Mol Struct 1205:127587. https://doi.org/10.1016/j.molstruc.2019.127587

    Article  CAS  Google Scholar 

  37. Menon VV, Mary YS, Mary YS, Panicker CY, Bielenica A, Armakovic S, Armakovic SJ, Van Alsenoy C (2018) Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative. J Mol Struct 1155:184–195. https://doi.org/10.1016/j.molstruc.2017.10.093

    Article  CAS  Google Scholar 

  38. Aswathy VV, Mary YS, Jojo PJ, Panicker CY, Bielenica A, Armakovic S, Armakovic SJ, Brozka P, Krukowski S, Van Alsenoy C (2017) Investigation of spectroscopic, reactive, transport and docking properties of 1-(3,4-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF:6): combined experimental and computational study. J Mol Struct 1134:668–680. https://doi.org/10.1016/j.molstruc.2017.01.016

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  40. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission

  41. Martin JML, Van Alsenoy C (1995) GAR2PED, A program to obtain a potential energy distribution from a Gaussian archive record. University of Antwerp, Antwerp

    Google Scholar 

  42. Kaur M, Mary YS, Varghese HT, Panicker CY, Yathirajan HS, Siddegowda MS, Van Alsenoy C (2012) Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4′-methylbiphenyl-2-carbonitrile. Spectrochim Acta 98:91–99. https://doi.org/10.1016/j.saa.2012.08.061

    Article  CAS  Google Scholar 

  43. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, Van Alsenoy C, War JA (2015) Molecular structure, FT-IR, vibrational assignments, HOMO-LUMO, MEP, NBO analysis and molecular docking study of ethyl-6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate. Spectrochim Acta 138:73–84. https://doi.org/10.1016/j.saa.2014.11.012

    Article  CAS  Google Scholar 

  44. Al-Ahmary KM, Soliman SM, Mekheimer RA, Habeeb MM, Alenezi MS (2017) Synthesis, spectral studies and DFT computational analysis of hydrogen bonded charge transfer complex between chloranilic acid with 2,4-diamino-quinoline-3-carbonitrile in different polar solvents. J Mol Liq 231:602–619. https://doi.org/10.1016/j.molliq.2017.02.038

    Article  CAS  Google Scholar 

  45. Hosna S, Janzen DE, Rzaigui M, Smirani W (2017) Synthesis, structural characterization, spectroscopic, thermal, dielectric and Hirshfeld surface analysis of 1-(2-methoxyphenyl)piperazinium chloranilate. Phase Transit 91:15–25. https://doi.org/10.1080/01411594.2017.1350959

    Article  CAS  Google Scholar 

  46. Anderson E (1967) The crystal and molecular structure of hydroxyquinones and salts of hydroxyquinones. I Chloranilic acid. Acta Cryst 22:188–191. https://doi.org/10.1107/S0365110X67000325

    Article  Google Scholar 

  47. Kabir MDK, Tobita H, Matsuo H, Nagayoshi K, Yamada K, Adachi K, Sugiyama Y, Kitagawa S, Kawata S (2003) Crystal engineering using the versatility of 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone with organic and metal complex partners. Cryst Growth Des 3:791–798. https://doi.org/10.1021/cg0340392

    Article  CAS  Google Scholar 

  48. Benzon KB, Mary YS, Varghese HT, Panicker CY, Armakovic S, Armakovic SJ, Pradhan K, Nanda AK, Van Alsenoy C (2017) Spectroscopic, DFT, molecular dynamics and molecular docking study of 1-butyl-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3- oxide. J Mol Struct 1134:330–344. https://doi.org/10.1016/j.molstruc.2016.12.100

    Article  CAS  Google Scholar 

  49. Roeges NPG (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley, New York

    Google Scholar 

  50. Al-Attas AS, Habeeb MM, Al-Raimi DS (2009) Synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol. J Mol Struct 928:158–170. https://doi.org/10.1016/j.molstruc.2009.03.025

    Article  CAS  Google Scholar 

  51. Al-Ahmary KM, Alenezi MS, Habeeb MM (2016) Synthesis, spectroscopic and DFT theoretical studies on the hydrogen bonded charge transfer complex of 4-aminoquinoline with chloranilic acid. J Mol Liq 220:166–182. https://doi.org/10.1016/j.molliq.2016.04.074

    Article  CAS  Google Scholar 

  52. Beegum S, Mary YS, Varghese HT, Panicker CY, Armakovic S, Armakovic SJ, Zitko J, Dolezal M, Van Alsenoy C (2017) Vibrational spectroscopic analysis of cyanopyrazine-2-carboxamide derivatives and investigations of their reactive properties by DFT calculations and molecular dynamics simulations. J Mol Struct 1131:1–15. https://doi.org/10.1016/j.molstruc.2016.11.044

    Article  CAS  Google Scholar 

  53. Beegum S, Mary YS, Mary YS, Thomas R, Armakovic S, Armakovic SJ, Zitko J, Dolezal M, Van Alsenoy C (2020) Exploring the detailed spectroscopic characteristics, chemical and biological activity of two cyanopyrazine-2-carboxamide derivatives using experimental and theoretical tools. Spectrochim Acta 224:117414. https://doi.org/10.1016/j.saa.2019.117414

    Article  CAS  Google Scholar 

  54. Gatfaoui S, Issaoui N, Mezni A, Bardak F, Roisnel T, Atac A, Marouani H (2017) Synthesis, structural and spectroscopic features, and investigation of bioactive nature of a novel organic-inorganic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate. J Mol Struct 1150:242–257. https://doi.org/10.1016/j.molstruc.2017.08.092

    Article  CAS  Google Scholar 

  55. Al-Otaibi JS, Almuqrin AH, Mary YS, Thomas R (2020) Modeling the conformational presence, spectroscopic properties, UV light harvesting efficiency, biological receptor inhibitory ability and other physic-chemical properties of five imidazole derivatives using quantum mechanical and molecular mechanics tools. J Mol Liq 112871. https://doi.org/10.1016/j.molliq.2020.112871

  56. Thomas R, Hossain M, Mary YS, Resmi KS, Armakovic S, Armakovic SJ, Nanda AK, Ranjan VK, Vijayakumar G, Van Alsenoy C (2018) Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. J Mol Struct 1158:156–175. https://doi.org/10.1016/j.molstruc.2018.01.021

    Article  CAS  Google Scholar 

  57. Sinha D, Tiwari AK, Singh S, Shukla G, Mishra P, Chandra H, Mishra AK (2008) Synthesis, characterization, and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem 43:160–165. https://doi.org/10.1016/j.ejmech.2007.03.022

    Article  CAS  PubMed  Google Scholar 

  58. Karan YS, Yalduz S (2019) Substituent effect study on the experimental 13C NMR chemical shifts of 3-(substituted phenyl)-3a,4,8,-81-tetrahydro-1,3-dioxepino[5,6-d][1,2]isoxazoles. J Mol Struct 1193:158–165. https://doi.org/10.1016/j.molstruc.2019.04.121

    Article  CAS  Google Scholar 

  59. Aswathy VV, Alpher-Hayta S, Yalcin G, Mary YS, Panicker CY, Jojo PJ, Kaynak-Onurdag F, Armakovic S, Armakovic SJ, Yildiz I, Van Alsenoy C (2017) Modification of benzoxazole derivative by bromine – spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures. J Mol Struct 1141:495–511. https://doi.org/10.1016/j.molstruc.2017.04.010

    Article  CAS  Google Scholar 

  60. Al-Otaibi JS, Mary YS, Thomas R, Narayana B Theoretical studies into the spectral characteristics, biological activity and photovoltaic cell efficiency of four new polycyclic aromatic chalcones. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2020.1747097

  61. Kumar VS, Mary YS, Pradhan K, Brahman D, Mary YS, Thomas R, Roxy MS, Van Alsenoy C (2020) Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. J Mol Struct 1199:127035. https://doi.org/10.1016/j.molstruc.2019.127035

    Article  CAS  Google Scholar 

  62. Chinnasamy S, Selvaraj G, Selvaraj C, Kaushik AC, Kaliamurthi S, Khan A, Singh SK, Wei D-Q (2020) Combining in silico and vitro approaches to identification of potent inhibitor against phospholipase A2(PLA2). Int J Biol Macromol 144:53–66. https://doi.org/10.1016/j.ijbiomac.2019.12.091

    Article  CAS  PubMed  Google Scholar 

  63. Al-Otaibi JS, Mary YS, Mary YS, Thomas R (2019) Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isonazid and malonamide. J Mol Struct 1197:719–726. https://doi.org/10.1016/j.molstruc.2019.07.110

    Article  CAS  Google Scholar 

  64. Kumar CSC, Panicker CY, Fun HK, Mary YS, Harikumar B, Chandraju S, Quah CK, Ooi CW (2014) FT-IR, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 2-(4-chlorophenyl)-2-oxoethyl 3-nitrobenzoate. Spectrochim Acta 126:208–219. https://doi.org/10.1016/j.saa.2014.01.145

    Article  CAS  Google Scholar 

  65. Mary YS, Miniyar PB, Mary YS, Resmi KS, Panicker CY, Armakovic S, Armakovic SJ, Thomas R, Sureshkumar B (2018) Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J Mol Struct 1173:469–480. https://doi.org/10.1016/j.molstruc.2018.07.026

    Article  CAS  Google Scholar 

  66. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748. https://doi.org/10.1093/bioinformatics/16.8.747

    Article  CAS  PubMed  Google Scholar 

  67. War JA, Srivastava SK, Srivastava SD (2017) Design, synthesis and DNA binding study of some novel morpholine linked thiazolidinone derivatives. Spectrochim Acta 173:270–278. https://doi.org/10.1016/j.saa.2016.07.054

    Article  CAS  Google Scholar 

  68. Heath RJ, Yuen-Tsu Y, Shapiro MA, Olson E, Rock CO (1998) Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273(46):30316–30320. https://doi.org/10.1074/jbc.273.46.30316

    Article  CAS  PubMed  Google Scholar 

  69. Sacchettini JC, Rubin EJ, Freundlich JS (2008) Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol 6(1):41–52. https://doi.org/10.1038/nrmicro1816

    Article  CAS  PubMed  Google Scholar 

  70. Ward WHJ, Holdgate GA, Rowsell S, McLean EG, Pauptit RA, Clayton E, Bichols WWN, Colls JG, Minshull CA, Jude DA, Mistry A, Timms D, Camble R, Hales NJ, Britton CJ, Taylor IWF (1999) Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochem. 38:12514–12525. https://doi.org/10.1021/bi9907779

    Article  CAS  Google Scholar 

  71. Duhovny D, Nussinov R, Wolfson HJ (2000) Efficient unbound docking of rigid molecules. In: Gusfield et al (eds) Proceedings of the second workshop on algorithms in bioinformatics (WABI) Rome, Italy, Lecture notes in computer science, vol 2452. Springer Verlag, pp185–200

  72. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Patchdock and Symmdock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mary YS, Mary YS, Resmi KS, Thomas R (2019) DFT and molecular docking investigations of oxicam derivatives. Heliyon 5:e02175. https://doi.org/10.1016/j.heliyon.2019.e02175

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mary YS, Mary YS, Resmi KS, Kumar VS, Thomas R, Sureshkumar B (2019) Detailed quantum mechanical , molecular docking , QSAR prediction , photovoltaic light harvesting efficiency analysis of benzil and its halogenated analogues. Heliyon 5:e02825. https://doi.org/10.1016/j.heliyon.2019.e02825

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Calculations were done at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources), TURKEY.

Author information

Authors and Affiliations

Authors

Contributions

Sheena Y. Mary: Conceived and designed the experiments, analyzed tools or data, and wrote the paper.

Shyma Y. Mary: Analyzed and interpreted the data and wrote the paper.

Goncagül SERDAROĞLU: Software, interpreted the data, and wrote the paper.

Sarojini B.K.: Designed the experiments, contributed materials, analyzed the data, and wrote the paper.

Corresponding author

Correspondence to Y. Sheena Mary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The submission of this work is according to the ethics followed by the journal.

Consent to participate

Consent is provided by the authors.

Consent to publish

Yes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4561 kb).

ESM 2

(DOCX 31 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary, Y.S., Mary, Y.S., Serdaroğlu, G. et al. Conformational analysis and quantum descriptors of two bifonazole derivatives of immense anti-tuber potential by using vibrational spectroscopy and molecular docking studies. Struct Chem 32, 859–867 (2021). https://doi.org/10.1007/s11224-020-01678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01678-7

Keywords

Navigation