Skip to main content

Advertisement

Log in

Information science techniques for investigating research areas: a case study in telecommunications policy

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In an attempt to develop an understanding of existing research trends and to inform the development of new research in the field of telecommunications, literature reviews are being conducted. As an effort for investigating research trend, our research suggests the application of a text mining analysis technique to identify the knowledge structures of academic research in the field of telecommunications policy and to pinpoint future research opportunities. In this study, three analytical techniques were employed: a productivity analysis; a contents analysis based on topic modeling and word co-occurrence; and an author co-citation analysis based on a hierarchical clustering algorithm, multidimensional scaling, and a factor analysis. The findings from the research productivity analysis imply that the journal ‘Telecommunications Policy’ has greatly contributed to the publication of studies related to telecommunications policy. Moreover, our research institution analysis results indicate that telecommunication policy studies are undertaken by experts in various research fields. The contents and citation analysis results demonstrate that many studies related to telecommunications policy cover infrastructure-related topics, including the design, arrangement, and distribution of telecommunications networks. By contrast, recent studies are found to focus on the privacy and digital divide issues that may arise in connection with the application of telecommunications networks to other information technologies or industrial areas. However, the area of policy research that focuses on the application of information technologies still concentrates on the methods for the application of existing services—such as broadcasting and multimedia—without paying sufficient attention to the policy issues that may arise from the application of cloud computing, the Internet of Things, or big data analytics, services that have emerged with the recent expansion of wireless communications networks. In this sense, there is a need for discussions about the policies to respond to the increasing use of radio frequencies owing to the expansion of the Internet of Things, and to promote the efficient and safe control of data transmitted in real time on the wireless Internet. Studies of new technologies in the telecommunications policy field should be carried out in view of local and national characteristics. At the same time, further studies should consider efficient and reasonable ways to export telecommunications and networking technologies to countries that seek to invest in or expand their telecommunications networks to new information technologies. Expanding on this research, more text mining techniques for analyzing large amounts of text data and for clustering and visualizing them need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo JL, Peng JE, Wang HC (2013) An opinion feature extraction approach based on a multidimensional sentence analysis model. Cybern Syst 44(5):379–401. doi:10.1080/01969722.2013.789649

    Article  Google Scholar 

  2. Li HL, Ng VTY (2013) Discovering associations between news and contents in social network sites with the D-Miner service framework. J Netw Comput Appl 36(6):1651–1659. doi:10.1016/j.jnca.2013.04.013

    Article  Google Scholar 

  3. Greaves F, Ramirez-Cano D, Mullett C, Darzi A, Donaldson L (2013) Use of sentiment analysis for capturing patient experience from free-text comments posted online. J Med Internet Res 15(11):e239. doi:10.2196/jmir.2721

    Article  Google Scholar 

  4. Yoon J, Kim K (2012) Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics 90:445–461. doi:10.1007/s11192-011-0543-2

    Article  Google Scholar 

  5. Lee C, Son C, Yoon B, Park Y (2013) An instrument for discovering new mobile service opportunities. Int J Mob Commun 11(4):374–392. doi:10.1504/IJMC.2013.055749

    Article  Google Scholar 

  6. Poelmans J, Hulle MMV, Viaene S, Elzinga P, Dedene G (2011) Text mining with emergent self organizing maps and multi-dimensional scaling: a comparative study on domestic violence. Appl Soft comput 11:3870–3876. doi:10.1016/j.asoc.2011.02.026

    Article  Google Scholar 

  7. Carbonell X, Guardiola E, Beranuy M, Belles A (2009) A bibliometric analysis of the scientific literature on internet, video games, cell phone addiction. J Med Libr Assoc 97(2):102–107. doi:10.3163/1536-5050.97.2.006

    Article  Google Scholar 

  8. Iwashita M, Shimogawa S, Nishimatsu K (2009) Text mining for customer enquiries in telecommunication services. In: Knowledge-based and intelligent information and engineering systems. Lecture Notes in Computer Science, vol 5712, pp 228–235. doi:10.1007/978-3-642-04592-9_29

    Chapter  Google Scholar 

  9. Rafiei M, Kardan AA (2015) A novel method for expert finding in online communities based on concept map and PageRank. Human-Centric Comput Inf Sci 5(10):1–18. doi:10.1186/s13673-015-0030-5

    Article  Google Scholar 

  10. Gerpott TJ, Thomas S (2014) Empirical research on mobile internet usage: a meta-analysis of the literature. Telecommun Policy 38(3):291–310. doi:10.1016/j.telpol.2013.10.003

    Article  Google Scholar 

  11. Arduini D, Zanfei A (2014) An overview of scholarly research on public e-Services? A meta-analysis of the literature. Telecommun Policy 38(5–6):476–495. doi:10.1016/j.telpol.2013.10.007

    Article  Google Scholar 

  12. Andrews JE (2003) An author co-citation analysis of medical informatics. J Med Libr Assoc 91(1):47–56 PMID: 12568157

    Google Scholar 

  13. Song M, Kim SY (2013) Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics 96(1):183–201. doi:10.1007/s11192-012-0900-9

    Article  Google Scholar 

  14. Mohammadi E (2012) Knowledge mapping of the Iranian nanoscience and technology: a text mining approach. Scientometrics 92(3):593–608. doi:10.1007/s11192-012-0644-6

    Article  Google Scholar 

  15. Naud A, Usui S (2008) Exploration of a collection of documents in neuroscience and extraction of topics by clustering. Neural Netw 21:1205–1211. doi:10.1016/j.neunet.2008.05.009

    Article  Google Scholar 

  16. Diaz-Faes AA, Bordons M (2014) Acknowledgments in scientific publications: presence in spanish science and text patterns across disciplines. J Assoc Inf Sci Technol 65(9):1834–1849. doi:10.1002/asi.23081

    Article  Google Scholar 

  17. Cho YS, Moon SC (2015) Recommender system using periodicity analysis via mining sequential patterns with time-series and FRAT analysis. J Converg 6(2):9–17. www.earticle.net/article.aspx?sn=258792

  18. Toledo RY, Mota YC, Borrot MG (2013) A regularity-based preprocessing method for collaborative recommender systems. J Inf Process Syst 9(3):435–460. doi:10.3745/JIPS.2013.9.3.435

    Article  Google Scholar 

  19. Thomson Reuters (2012) Web of knowledge web services lite v.3.0, white paper

  20. Anderson JC, Lehnardt J, Slater N (2010) CouchDB: the definitive guide, 1st edn. O’Reilly Media, Sebastopol

    Google Scholar 

  21. Holt B (2011) Writing and querying MapReduce views in CouchDB, 1st edn. O’Reilly Media, Sebastopol

    Google Scholar 

  22. Papadimitrious CH, Raghavan P, Tamaki H, Vempala S (1998) Latent semantic indexing: a probabilistic analysis. In: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp 159–168

  23. Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 50–57

  24. Fortuna B, Grobelnik M, Mladenic D (2005) Visualization of text document corpus. Informatica 29:497–502

  25. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

  26. Oh J, Lee BG (2014) A technical approach for suggesting research directions in telecommunications policy. KSII Trans Internet Inf Syst 8(12):4467–4488. doi:10.3837/tiis.2014.12.0

    Article  Google Scholar 

  27. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    Article  MathSciNet  Google Scholar 

  28. Newman MEJ (2003) Fast algorithm for detecting community structure in networks. Phys Rev E 69:1–5. doi:10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  29. Matsuo Y, Sakaki T, Uchiyama K, Ishizuka M (2006) Graph-based word clustering using a web search engine. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp 542–550

  30. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254. doi:10.1007/BF02289588

    Article  MATH  Google Scholar 

  31. White HD, Griffith BC (1981) Author cocitation: a literature measure of intellectual structure. J Am Soc Inf Sci 32(3):163–171. doi:10.1002/asi.4630320302

    Article  Google Scholar 

  32. McCain KW (1990) Mapping authors in intellectual space: a technical overview. J Am Soc Inf Sci 41(6):433–443. doi:10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q

    Article  Google Scholar 

  33. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publication, Thousand Oaks

    Book  Google Scholar 

  34. Busing FMTA, Commandeur JJF, Heiser WJ, Bandilla W, Faulbaum F (1997) PROXSCAL: a multidimensional scaling program for individual differences scaling with constraints. Adv Stat Softw 6:67–73

    Google Scholar 

  35. Young FW, Takane Y, Lewyckyj R (1978) ALSCAL: a nonmetric multidimensional scaling program with several individual-differences options. Behav Res Methods 10:451–453. doi:10.3758/BF03205177

    Article  Google Scholar 

  36. Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika 35:283–319. doi:10.1007/BF02310791

    Article  MATH  Google Scholar 

  37. Busing FMTA, Groenen PJK, Heiser WJ (2005) Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika 70:71–98. doi:10.1007/s11336-001-0908-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27. doi:10.1007/BF02289565

    Article  MathSciNet  MATH  Google Scholar 

  39. Hair JF, Black WC, Babin BJ, Anderson RE (2009) Multivariate data analysis, 7th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  40. Burley JB, Singhal VBP, Burley CJ, Fasser D, Churchward C, Hellekson D, Raharizafy I (2009) Citation analysis of transportation research literature: a multi-dimensional map of the roadside universe. Landsc Res 34(4):481–495. doi:10.1080/01426390903009297

    Article  Google Scholar 

  41. Feldman R, Sanger J (2006) The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Witten IH, Paynter GW, Frank E, Gutwin C, Nevill-Manning CG (1999) KEA: practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, pp 254–255

  43. Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci 24(4):28–31. doi:10.1002/asi.463024040

    Article  Google Scholar 

  44. Griffith BC (1980) Key papers in information science. Knowledge Industry Publications Inc, New York

    Google Scholar 

  45. Kerlinger FN, Lee HB (1999) Foundations of behavioral research, 4th edn. Cenagage Learning, Boston

    Google Scholar 

  46. Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a cocitation similarity measure, with special reference to pearson’s correlation coefficient. J Am Soc Inf Sci Technol 54(6):550–560. doi:10.1002/asi.10242

    Article  Google Scholar 

  47. White HD (2003) Author cocitation analysis and Pearson’s r. J Am Soc Inf Sci Technol 54(13):1250–1259. doi:10.1002/asi.10325

    Article  Google Scholar 

  48. Leydesdorff L, Vaughan L (2006) Co-occurrence matrices and their applications in information science: extending ACA to the web environment. J Am Soc Inf Sci Technol 57(12):1616–1628. doi:10.1002/asi.20335

    Article  Google Scholar 

  49. Zhao H, Lin X (2010) A comparison of mapping algorithms for author co-citation data analysis. Proc Am Soc Inf Sci Technol 2010:1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Oh, J. Information science techniques for investigating research areas: a case study in telecommunications policy. J Supercomput 74, 6691–6718 (2018). https://doi.org/10.1007/s11227-017-2062-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2062-2

Keywords

Navigation