Skip to main content
Log in

Primal Superlinear Convergence of Sqp Methods in Piecewise Linear-Quadratic Composite Optimization

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper mainly concerns with the primal superlinear convergence of the quasi-Newton sequential quadratic programming (SQP) method for piecewise linear-quadratic composite optimization problems. We show that the latter primal superlinear convergence can be justified under the noncriticality of Lagrange multipliers and a version of the Dennis-Moré condition. Furthermore, we show that if we replace the noncriticality condition with the second-order sufficient condition, this primal superlinear convergence is equivalent with an appropriate version of the Dennis-Moré condition. We also recover Bonnans’ result in (Appl. Math. Optim. 29, 161–186, 1994) for the primal-dual superlinear of the basic SQP method for this class of composite problems under the second-order sufficient condition and the uniqueness of Lagrange multipliers. To achieve these goals, we first obtain an extension of the reduction lemma for convex Piecewise linear-quadratic functions and then provide a comprehensive analysis of the noncriticality of Lagrange multipliers for composite problems. We also establish certain primal estimates for KKT systems of composite problems, which play a significant role in our local convergence analysis of the quasi-Newton SQP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bonnans, J.F., Gilbert, J.C.h., Lemaréchal, C., Sagastizabal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Boggs, P.T., Tolle, J.W., Wang, P.: On the local convergence of quasi-Newton methods for constrained optimization. SIAM J. Control Optim. 20, 161–171 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bolte, J., Chen, Z., Pauwels, E.: The multiproximal linearization method for convex composite problems. Math. Program. 182, 1–36 (2020)

    Article  MathSciNet  Google Scholar 

  5. Burke, J.V., metric, A. Engle.: Strong (sub)regularity of KKT mappings for piecewise linear-quadratic convex composite optimization. To appear in Math. Oper. Res., arXiv:1805.01073 (2019)

  6. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  7. Do, H., Mordukhovich, B.S., Sarabi, M.E.: Criticality of Lagrange multipliers in extended nonlinear optimization. Optimization, https://doi.org/10.1080/02331934.2020.1723585 (2020)

  8. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd edn. Springer, Dordrecht (2014)

    MATH  Google Scholar 

  9. Dontchev, A.L., Rockafellar, R.T.: Characterizations of Lipschitzian stability in nonlinear programming. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations, pp 65–82. Marcel Dekker, New York (1997)

  10. Drusvyatskiy, D., Lewis, A.S.: Error bounds, quadratic growth, and linear convergence of proximal methods. Math. Oper. Res. 43, 919–948 (2018)

    Article  MathSciNet  Google Scholar 

  11. Fernández, D., Izmailov, A.F., Solodov, M.V.: Sharp primal superlinear convergence results for some newtonian methods for constrained optimization. SIAM J. Optim. 20, 3312–3334 (2010)

    Article  MathSciNet  Google Scholar 

  12. Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. Springer, Cham (2017)

    Book  Google Scholar 

  13. Izmailov, A.F.: On the analytical and numerical stability of critical Lagrange multipliers. Comput. Math. Math. Phys. 45, 930–946 (2005)

    MathSciNet  Google Scholar 

  14. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 133, 93–120 (2012)

    Article  MathSciNet  Google Scholar 

  15. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer, New York (2014)

    Book  Google Scholar 

  16. Izmailov, A.F., Solodov, M.V.: Newton-type methods: A broader view. J. Optim. Theory Appl. 164, 577–620 (2015)

    Article  MathSciNet  Google Scholar 

  17. Levy, A.B.: Second-order epi-derivatives of composite functionals. Ann. Oper. Res. 101, 267–281 (2001)

    Article  MathSciNet  Google Scholar 

  18. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. 158, 501–546 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Applications. Springer Monographs in Mathematics Variational. Springer, Cham (2018)

    Book  Google Scholar 

  20. Mordukhovich, B., Sarabi, M.E.: Critical multipliers in variational systems via second-order generalized differentiation. Math Program. 169, 605–648 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mordukhovich, B., Sarabi, M.E.: Criticality of Lagrange multipliers in variational systems. SIAM J. Optim. 29, 1524–1557 (2019)

    Article  MathSciNet  Google Scholar 

  22. Mohammadi, A., Mordukhovich, B., Sarabi, M.E.: Variational analysis of composite models with applications to continuous optimization. To appear in Math. Oper. Res., arXiv:1905.08837 (2020)

  23. Mohammadi, A., Mordukhovich, B., Sarabi, M.E.: Parabolic regularity via geometric variational analysis. To appear in Trans. Amer. Math Soc. arXiv:1909.00241 (2019)

  24. Mohammadi, A., Mordukhovich, B., Sarabi, M.E.: Stability of KKT systems and superlinear convergence of the SQP method under parabolic regularity. J. Optim Theory Appl. 186, 731–758 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mohammadi, A., Sarabi, M.E.: Twice epi-differentiability of extended-real-valued functions with applications in composite optimization. SIAM J. Optim. 30, 2379–2409 (2020)

    Article  MathSciNet  Google Scholar 

  26. Poliquin, R.A., Rockafellar, R.T.: Amenable functions in optimization. In: Giannessi, F. (ed.) Non- smooth Optimization Methods and Applications, pp 338–353 (1992)

  27. Robinson, S.M.: Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear programming algorithms. Math. Program. 7, 1–16 (1974)

    Article  MathSciNet  Google Scholar 

  28. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 3–62 (1980)

    Article  MathSciNet  Google Scholar 

  29. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    Article  MathSciNet  Google Scholar 

  30. Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16, 292–309 (1991)

    Article  MathSciNet  Google Scholar 

  31. Rockafellar, R.T.: Proto-differentiability of set-valued mappings and its applications in optimization Attouch, H., et al. (eds.) . Gathier-Villars, Paris (1989)

  32. Rockafellar, R.T.: First- and second-order epi-differentiability in nonlinear programming. Trans. Amer. Math Soc. 307, 75–108 (1988)

    Article  MathSciNet  Google Scholar 

  33. Rockafellar, R.T.: Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives. Math. Oper. Res. 14, 462–484 (1989)

    Article  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Extended nonlinear programming. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, vol. 36, pp 381–399,. Kluwer Academic Publishers, Dordrecht (2000)

  35. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 317. Springer, Berlin (2006)

    Google Scholar 

  36. Rockafellar, R.T., Wets, R.J-B: A Lagrangian finite-generation technique for solving linear-quadratic problems in stochastic programming. Math Program. Stud. 28, 63–93 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers whose comments and suggestions helped improve the original presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahim Sarabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarabi, M.E. Primal Superlinear Convergence of Sqp Methods in Piecewise Linear-Quadratic Composite Optimization. Set-Valued Var. Anal 30, 1–37 (2022). https://doi.org/10.1007/s11228-021-00580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-021-00580-6

Keywords

Mathematics Subject Classification (2010)

Navigation