Skip to main content
Log in

Projective ring line encompassing two-qubits

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We find that the projective line over the (noncommutative) ring of 2×2 matrices with coefficients in GF(2) fully accommodates the algebra of 15 operators (generalized Pauli matrices) characterizing two-qubit systems. The relevant subconfiguration consists of 15 points, each of which is either simultaneously distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be identified one-to-one with the points such that their commutation relations are exactly reproduced by the underlying geometry of the points with the ring geometric notions of neighbor and distant corresponding to the respective operational notions of commuting and noncommuting. This remarkable configuration can be viewed in two principally different ways accounting for the basic corresponding 9+6 and 10+5 factorizations of the algebra of observables: first, as a disjoint union of the projective line over GF(2) × GF(2) (the “Mermin” part) and two lines over GF(4) passing through the two selected points that are omitted; second, as the generalized quadrangle of order two with its ovoids and/or spreads corresponding to (maximum) sets of five mutually noncommuting operators and/or groups of five maximally commuting subsets of three operators each. These findings open unexpected possibilities for an algebro-geometric modeling of finite-dimensional quantum systems and completely new prospects for their numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Blunck and H. Havlicek, Abh. Math. Sem. Univ. Hamburg, 70, 287–299 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Blunck and H. Havlicek, Math. Pannon., 14, 113–127 (2003).

    MATH  MathSciNet  Google Scholar 

  3. A. Blunck and H. Havlicek, Aequationes Math., 69, 146–163 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Havlicek,Quad. Sem. Matem. di Brescia, 11, 1–63 (2006); http://www.geometrie.tuwien.ac.at/havlicek/pdf/dd-laguerre.pdf (2004).

  5. A. Herzer, “Chain geometries,” in: Handbook of Incidence Geometry (F. Buekenhout, ed.), Elsevier, Amsterdam (1995), p. 781–842.

    Chapter  Google Scholar 

  6. M. Saniga, M. Planat, M. R. Kibler, and P. Pracna, Chaos Solitons Fractals, 33, 1095–1102 (2007); arXiv:math/0605301v4 [math.AG] (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Saniga and M. Planat, Chaos Solitons Fractals, 37, 337–345 (2008); arXiv:math/0604307v2 [math.AG] (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Saniga and M. Planat, Theor. Math. Phys., 151, 474–481 (2007); arXiv:quant-ph/0603051v2 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Saniga, M. Planat, and M. Minarovjech, Theor. Math. Phys., 151, 625–631 (2007); arXiv:quant-ph/0603206v1 (2006).

    Article  MATH  Google Scholar 

  10. M. Planat, M. Saniga, and M. R. Kibler, SIGMA, 0602, 066 (2006); arXiv:quant-ph/0605239v4 (2006).

    MathSciNet  Google Scholar 

  11. M. Saniga, M. Planat, and P. Pracna, “A classification of the projective lines over small rings II: Non-commutative case,” arXiv:math.AG/0606500v1 (2006).

  12. J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, Mass. (1967).

    MATH  Google Scholar 

  13. B. R. McDonald, Finite Rings with Identity, Dekker, New York (1974).

    MATH  Google Scholar 

  14. R. Raghavendran, Compos. Math., 21, 195–229 (1969).

    MATH  MathSciNet  Google Scholar 

  15. C. Nöbauer, “The book of the rings: Part I,” http://www.algebra.uni-linz.ac.at/~noebsi/pub/rings.ps (2000).

  16. H. Van Maldeghem, Generalized Polygons, Birkhäuser, Basel (1998).

    MATH  Google Scholar 

  17. B. Polster and H. Van Maldeghem, J. Combin. Theory Ser. A, 96, 162–179 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Polster, A Geometrical Picture Book, Springer, New York (1998).

    MATH  Google Scholar 

  19. B. Polster, Bull. Belg. Math. Soc. Simon Stevin, 5, 417–425 (1998).

    MATH  MathSciNet  Google Scholar 

  20. B. Polster, A. E. Schroth, and H. Van Maldeghem, Math. Intelligencer, 23, 33–47 (2001).

    Article  MathSciNet  Google Scholar 

  21. J. Lawrence, Č. Brukner, and A. Zeilinger, Phys. Rev. A, 65, 032320 (2002).

    Google Scholar 

  22. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman, Boston (1984).

    MATH  Google Scholar 

  23. H. Havlicek, Mitt. Math. Ges. Hamburg, 26, 75–94 (2007); http://www.geometrie.tuwien.ac.at/havlicek/pub/pentazyklisch.pdf.

    MATH  MathSciNet  Google Scholar 

  24. M. Saniga and M. Planat, Adv. Stud. Theor. Phys., 1, 1–4 (2007); arXiv:quant-ph/0612179v1 (2006).

    MATH  MathSciNet  Google Scholar 

  25. M. Planat and M. Saniga, Quantum Inf. Comput., 8, 127–146 (2008); arXiv: quant-ph/0701211v3 (2007).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saniga.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 3, pp. 463–473, June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saniga, M., Planat, M. & Pracna, P. Projective ring line encompassing two-qubits. Theor Math Phys 155, 905–913 (2008). https://doi.org/10.1007/s11232-008-0076-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0076-x

Keywords

Navigation