Skip to main content
Log in

Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type. These operators have two alternative descriptions: (1) the GL characters are their eigenfunctions and the symmetric group characters are their eigenvalues; (2) they can be represented as W-type differential operators (in particular, acting on the time variables in the Hurwitz-Kontsevich τ-function). The operators have the simplest form when expressed in terms of the Miwa variables. They form an important commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points of the branched covering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hurwitz, Math. Ann., 39, 1–60 (1891); 55, 53–66 (1902).

    Article  MathSciNet  Google Scholar 

  2. G. Frobenius, Berl. Ber., 985–1021 (1896).

  3. R. Dijkgraaf, “Mirror symmetry and elliptic curves,” in: The Moduli Spaces of Curves (Progr. Math., Vol. 129, D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, and M. Thaddeus, eds.), Birkhäuser, Boston, Mass. (1995), pp. 149–163.

    Chapter  Google Scholar 

  4. R. Vakil, “Enumerative geometry of curves via degeneration methods,” Doctoral dissertation, Harvard University, Cambridge, Mass. (1997).

    Google Scholar 

  5. I. P. Goulden and D. M. Jackson, Proc. Amer. Math. Soc., 125, 51–60 (1997); arXiv:math.CO/9903094v1 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Zvonkine and S. K. Lando, Funct. Anal. Appl., 33, No. 3, 178–188 (1999); “Counting ramified coverings and intersection theory on spaces of rational functions I (Cohomology of Hurwitz spaces),” arXiv: math.AG/0303218v1 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. M. Natanzon and V. Turaev, Topology, 38, 889–914 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. P. Goulden, D. M. Jackson, and A. Vainshtein, Ann. Comb., 4, 27–46 (2000); arXiv:math.AG/9902125v1 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Okounkov, Math. Res. Lett., 7, 447–453 (2000); arXiv:math.AG/0004128v1 (2000).

    MATH  MathSciNet  Google Scholar 

  10. A. Givental, Moscow Math. J., 1, 551–568 (2001); arXiv:math.AG/0108100v2 (2001).

    MATH  MathSciNet  Google Scholar 

  11. T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Invent. Math., 146, 297–327 (2001); arXiv: math.AG/0004096v3 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. S. K. Lando, Russ. Math. Surveys, 57, 463–533 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. A. V. Alexeevski and S. M. Natanzon, Selecta Math., 12, 307–377 (2006); arXiv:math.GT/0202164v2 (2002).

    MATH  MathSciNet  Google Scholar 

  14. A. V. Alekseevskii and S. M. Natanzon, Russ. Math. Surveys, 61, 767–769 (2006); S. M. Natanzon, “Disk single Hurwitz numbers,” arXiv:0804.0242v2 [math.GT] (2008); A. Alexeevski and S. Natanzon, “Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy-Frobenius algebras of finite groups,” in: Geometry, Topology, and Mathematical Physics (Amer. Math. Soc. Transl. Ser. 2, Vol. 224, V. M. Buchstaber and I. M. Krichever, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 1–25; A. V. Alekseevskii, Izv. Math., 72, 627–646 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. J. Zhou, “Hodge integrals, Hurwitz numbers, and symmetric groups,” arXiv:math.AG/0308024v1 (2003).

  16. A. Okounkov and R. Pandharipande, Ann. Math., 163, 517–560 (2006); arXiv:math.AG/0204305v1 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Graber and R. Vakil, Compos. Math., 135, 25–36 (2003); arXiv:math.AG/0003028v1 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. E. Kazarian and S. K. Lando, Izv. Math., 68, 82–113 (2004); arXiv:math.AG/0410388v1 (2004); M. E. Kazarian and S. K. Lando, J. Amer. Math. Soc., 20, 1079–1089 (2007); arXiv:math.AG/0601760v1 (2006).

    Google Scholar 

  19. M. Kazarian, Adv. Math., 221, 1–21 (2009); arXiv:0809.3263v1 [math.AG] (2008).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Lando, “Combinatorial facets of Hurwitz numbers,” in: Applications of Group Theory to Combinatorics (J. Koolen, J. H. Kwak, and M.-Y. Xu, eds.), CRC, Boca Raton, Fla. (2008), pp. 109–131.

    Chapter  Google Scholar 

  21. V. Bouchard and M. Mariño, “Hurwitz numbers, matrix models, and enumerative geometry,” in: From Hodge Theory to Integrability and TQFT: tt*-Geometry (Proc. Sympos. Pure Math., Vol. 78, R. Y. Donagi and K. Wendland, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 263–283; arXiv:0709.1458v2 [math.AG] (2007).

    Google Scholar 

  22. A. Mironov and A. Morozov, JHEP, 0902, 024 (2009); arXiv:0807.2843v3 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Mironov, A. Morozov, and S. Natanzon, “Integrability and N-point Hurwitz numbers” (to appear).

  24. A. Morozov and Sh. Shakirov, JHEP, 0904, 064 (2009); arXiv:0902.2627v3 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  25. D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Clarendon, Oxford (1950); M. Hamermesh, Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, Mass. (1962); I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995); W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry (London Math. Soc. Stud. Texts, Vol. 35), Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  26. N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” in: The Unity of Mathematics (Progr. Math., Vol. 244, P. Etingof, V. Retakh, and I. M. Singer, eds.), Birkhäuser, Boston, Mass. (2006), pp. 525–596; arXiv:hep-th/0306238v2 (2003); A. Marshakov and N. Nekrasov, JHEP, 0701, 104 (2007); arXiv:hep-th/0612019v2 (2006); B. Eynard, J. Stat. Mech., 0807, P07023 (2008); arXiv:0804.0381v2 [math-ph] (2008); A. Klemm and P. Sułkowski, Nucl. Phys. B, 819, 400–430 (2009); arXiv:0810.4944v2 [hep-th] (2008).

    Google Scholar 

  27. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2015–2051 (1995); arXiv:hep-th/9312210v1 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Modern Phys. Lett. A, 8, 1047–1061 (1993); arXiv:hep-th/9208046v2 (1992); S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Theor. Math. Phys., 95, 571–582 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. M. L. Kontsevich, Funct. Anal. Appl., 25, No. 2, 123–129 (1991); M. L. Kontsevich, Comm. Math. Phys., 147, 1–23 (1992); S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Phys. Lett. B, 275, 311–314 (1992); arXiv:hep-th/9111037v1 (1991); S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Nucl. Phys. B, 380, 181–240 (1992); arXiv:hep-th/9201013v1 (1992); A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 274, 280–288 (1992); arXiv:hep-th/9201011v1 (1992); S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 397, 339–378 (1993); arXiv:hep-th/9203043v1 (1992); P. Di Francesco, C. Itzykson, and J.-B. Zuber, Comm. Math. Phys., 151, 193–219 (1993); arXiv:hep-th/9206090v1 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Yu. Morozov, Sov. Phys. Uspekhi, 37, 1–55 (1994); arXiv:hep-th/9303139v2 (1993); A. Yu. Morozov, “Matrix models as integrable systems,” arXiv:hep-th/9502091v1 (1995); “Challenges of matrix models,” in: String Theory: From Gauge Interactions to Cosmology (NATO Sci. Ser. II Math. Phys. Chem., Vol. 208, L. Baulieu, J. de Boer, B. Pioline, and E. Rabinovici, eds.), Springer, Dordrecht (2006), pp. 129-162; arXiv:hepth/0502010v2 (2005); A. Mironov, Internat. J. Mod. Phys. A, 9, 4355–4405 (1994); arXiv:hep-th/9312212v1 (1993); A. D. Mironov, Phys. Part. Nucl., 33, 537–582 (2002).

    ADS  MATH  Google Scholar 

  31. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl. Phys. B, 357, 565–618 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak, Nucl. Phys. B, 404, 717–750 (1993); arXiv:hep-th/9208044v1 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. A. Mironov and A. Morozov, Phys. Lett. B, 252, 47–52 (1990); F. David, Modern Phys. Lett. A, 5, 1019–1029 (1990); J. Ambjørn and Yu. M. Makeenko, Modern Phys. Lett. A, 5, 1753–1763 (1990); H. Itoyama and Y. Matsuo, Phys. Lett. B, 255, 202–208 (1991); Yu. Makeenko, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 356, 574–628 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 19, 4127–4163 (2004); arXiv:hep-th/0310113v1 (2003); A. S. Alexandrov, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 142, 349–411 (2005); A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 21, 2481–2517 (2006); arXiv:hep-th/0412099v1 (2004); Fortschr. Phys., 53, 512–521 (2005); arXiv:hep-th/0412205v1 (2004); B. Eynard, JHEP, 0411, 031 (2004); arXiv:hep-th/0407261v1 (2004); B. Eynard and N. Orantin, Commun. Number Theory Phys., 1, 347–452 (2007); arXiv:math-ph/0702045v4 (2007); N. Orantin, “From matrix models’ topological expansion to topological string theories: Counting surfaces with algebraic geometry,” arXiv:0709.2992v1 [hep-th] (2007); A. Alexandrov, A. Mironov, A. Morozov, and P. Putrov, Internat. J. Mod. Phys. A, 24, 4939–4998 (2009); arXiv:0811.2825v2 [hep-th] (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. A. S. Alexandrov, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 150, 153–164 (2007); arXiv:hep-th/0605171v1 (2006); A. Alexandrov, A. Mironov, and A. Morozov, Phys. D, 235, 126–167 (2007); arXiv:hep-th/0608228v1 (2006); N. Orantin, “Symplectic invariants, Virasoro constraints, and Givental decomposition,” arXiv:0808.0635v2 [math-ph] (2008).

    Article  MATH  Google Scholar 

  36. A. B. Zamolodchikov, Theor. Math. Phys., 65, 1205–1213 (1985); V. A. Fateev and A. B. Zamolodchikov, Nucl. Phys. B, 280, 644–660 (1987); A. Gerasimov, A. Marshakov, and A. Morozov, Phys. Lett. B, 236, 269–272 (1990); Nucl. Phys. B, 328, 664–676 (1989); A. Marshakov and A. Morozov, Nucl. Phys. B, 339, 79–94 (1990); A. Morozov, Nucl. Phys. B, 357, 619–631 (1991).

    Article  MathSciNet  Google Scholar 

  37. M. Sato, “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds,” in: Random Systems and Dynamical Systems (RIMS Kokyuroku, Vol. 439, H. Totoki, ed.), Kyoto Univ., Kyoto (1981), pp. 30–46.

    Google Scholar 

  38. G. Segal and G. Wilson, Publ. Math. Publ. IHES, 61, 5–65 (1985); D. Friedan and S. Shenker, Phys. Lett. B, 175, 287–296 (1986); Nucl. Phys. B, 281, 509–545 (1987); N. Ishibashi, Y. Matsuo, and H. Ooguri, Modern Phys. Lett. A, 2, 119–132 (1987); L. Alvarez-Gaumé, C. Gomez, and C. Reina, Phys. Lett. B, 190, 55–62 (1987); A. Morozov, Phys. Lett. B, 196, 325–328 (1987); A. S. Schwarz, Nucl. Phys. B, 317, 323–343 (1989).

    MATH  MathSciNet  Google Scholar 

  39. M. Jimbo and T. Miwa, Publ. RIMS Kyoto Univ., 19, 943–1001 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  40. K. Ueno and K. Takasaki, “Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (Adv. Stud. Pure Math., Vol. 4, K. Okamoto, ed.), North-Holland, Amsterdam (1984), pp. 1–95.

    Google Scholar 

  41. S. Helgason, Differential Geometry and Symmetric Spaces (Pure Appl. Math., Vol. 12), Acad. Press, New York (1962); D. P. Zelobenko, Compact Lie Groups and their Representations (Transl. Math. Monogr., Vol. 40), Amer. Math. Soc., Providence, R. I. (1973).

    MATH  Google Scholar 

  42. A. Alexandrov, A. Mironov, and A. Morozov, “Cut-and-join operators, matrix models, and characters” (to appear).

  43. A. Grothendieck, “Esquisse d’un programme,” in: Geometric Galois Actions (London Math. Soc. Lect. Note Ser., Vol. 242, L. Schneps and P. Lochak, eds.), Vol. 1, Cambridge Univ. Press, Cambridge (1997), pp. 5–48; G. V. Belyi, Math. USSR-Izv., 14, 247–256 (1980); G. B. Shabat and V. A. Voevodsky, “Drawing curves over number fields,” in: The Grothendieck Festschrift (Progr. Math., Vol. 88, P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin, and K. A. Ribet, eds.), Vol. 3, Birkhäuser, Boston, Mass. (1990), pp. 199–227; A. Levin and A. Morozov, Phys. Lett. B, 243, 207–214 (1990); S. K. Lando and A. K. Zvonkine, Graphs on Surfaces and Their Applications (Encycl. Math. Sci., Vol. 141), Springer, Berlin (2004); N. M. Adrianov, N. Ya. Amburg, V. A. Dremov, Yu. A. Levitskaya, E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova, and G. B. Shabat, “Catalog of dessins d’enfants with ≤ 4 edges,” arXiv:0710.2658v1 [math.AG] (2007).

    Google Scholar 

  44. A. Mironov, A. Morozov, and S. Natanzon, “Universal algebras of Hurwitz numbers,” arXiv:0909.1164v2 [math.GT] (2009).

  45. M. Atiyah, Publ. Math. IHES, 68, 175–186 (1988).

    MATH  MathSciNet  Google Scholar 

  46. R. Dijkgraaf and E. Witten, Comm. Math. Phys., 129, 393–429 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. A. Morozov, Sov. Phys. Usp., 35, 671–714 (1992); A. Mironov, A. Morozov, and L. Vinet, Theor. Math. Phys., 100, 890–899 (1994); arXiv:hep-th/9312213v2 (1993); A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2589–2614 (1995); arXiv:hep-th/9405011v1 (1994); S. Kharchev, A. Mironov and A. Morozov, Theor. Math. Phys., 104, 866–878 (1995); arXiv:q-alg/9501013v1 (1995); A. Mironov, “Quantum deformations of τ -functions, bilinear identities, and representation theory,” in: Symmetries and Integrability of Difference Equations (CRM Proc. Lect. Notes, Vol. 9, D. Levi, L. Vinet, and P. Winternitz, eds.), Amer. Math. Soc., Providence, R. I. (1996), pp. 219–237; arXiv:hep-th/9409190v2 (1994); A. D. Mironov, Theor. Math. Phys., 114, 127–183 (1998); arXiv:q-alg/9711006v2 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Mironov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 166, No. 1, pp. 3–27, January, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A.D., Morozov, A.Y. & Natanzon, S.M. Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory. Theor Math Phys 166, 1–22 (2011). https://doi.org/10.1007/s11232-011-0001-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0001-6

Keywords

Navigation