Skip to main content
Log in

The important role of functional integrals in modern physics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The 20th century has witnessed the emergence of the physics of fluctuating systems both statistical and quantum. This to some extent explains the important role played by functional integrals in modern physics. We describe a few striking examples of physics problems where using path and, more generally, field integrals has proved decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. M. de Maupertuis, “Les Loix du mouvement et du repos déduites d’un principe métaphysique,” in: Histoire de l’Académie Royale des Sciences et Belles-Lettres, Institut de France, Paris (1746), p. 267–294.

    Google Scholar 

  2. L. Euler, “Additamentum II,” in: Methodus Inveniendi Lineas Curvas Maximi Minime Proprietate Gaudentes, Sive Solutis Problematis Isoperimetrici Latissimo Sensu Accepti (Original Latin text), Bousquet, Lausanne (1774).

  3. J.-L. Lagrange, Mécanique analytique, Chez la Veuve Desaint, Paris (1788); “Mémoire sur la théorie du mouvement des fluides,” in: Oeuvres de Lagrange (J. A. Serret, ed.), Vol. 4, Gauthier-Villars, Paris (1867), pp. 695-748.

    Google Scholar 

  4. W. R. Hamilton, Phil. Trans. Roy. Soc. London, 124, 247–308 (1834); 125, 95–144 (1835).

    Article  Google Scholar 

  5. D. Hilbert, Gött. Nachr., 27, 395–407 (1915).

    Google Scholar 

  6. R. P. Feynman, Rev. Modern Phys., 20, 367–387 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Zinn-Justin, Scholarpedia, 4, 8674 (2009).

    Article  Google Scholar 

  8. J. Zinn-Justin, Path Integrals in Quantum Mechanics (Oxford Grad. Texts, Vol. 13), Oxford Univ. Press, Oxford (2005).

    MATH  Google Scholar 

  9. P. A. M. Dirac, Physik. Z. Sowjetunion, 3, 64–72 (1933); J. Schwinger, Selected Papers on Quantum Electrodynamics, Dover, New York (1958).

    MATH  Google Scholar 

  10. A. N. Vassiliev, “Etudes des symétries brisées par des méthodes functionnelles (Notes taken by P. Moussa),” in: Cargèse Lectures in Physics (D. Bessis, ed.), Vol. 5, Gordon and Breach, New York (1971), pp. 239–303.

    Google Scholar 

  11. A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad State Univ. Press, Leningrad (1976); English transl.: Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach, Amsterdam (1998).

    Google Scholar 

  12. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford (1989).

    Google Scholar 

  13. R. P. Feynman, Acta Phys. Polon., 24, 697–722 (1963).

    MathSciNet  Google Scholar 

  14. L. D. Faddeev and V. N. Popov, Phys. Lett. B, 25, 29–30 (1967); L. D. Faddeev, Scholarpedia, 4, 7389 (2009).

    Article  ADS  Google Scholar 

  15. C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys., 42, 127–162 (1975); Ann. Phys., 98, 287–321 (1976); I. V. Tyutin, “Gauge invariance in field theory and statistical physics in the operator formulation,” Preprint No. 39, Lebedev Phys. Inst., Moscow (1975); C. M. Becchi and C. Imbimbo, Scholarpedia, 3, 7135 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. ’t Hooft, Nucl. Phys. B, 33, 173–199 (1971).

    Article  ADS  Google Scholar 

  17. B. W. Lee and J. Zinn-Justin, Phys. Rev. D, 5, 3121–3137, 3137–3155, 3155–3160 (1972); Erratum, 8, 4654–4654 (1973); 7, 1049–1056 (1973).

    Article  ADS  Google Scholar 

  18. A. A. Slavnov, Theor. Math. Phys., 10, 99–104 (1972); J. C. Taylor, Nucl. Phys. B, 33, 436–444 (1971); A. A. Slavnov, Scholarpedia, 3, 7119 (2008).

    Article  Google Scholar 

  19. J. Zinn-Justin, “Renormalization of gauge theories,” in: Trends in Elementary Particle Theory (H. Rollnik and K. Dietz, eds.) (Lect. Notes Phys., Vol. 37), Springer, Berlin (1975), p. 1–39; Modern Phys. Lett. A, 14, 1227–1235 (1999); arXiv:hep-th/9906115v1 (1999); Scholarpedia, 4, 7120 (2009).

    Chapter  Google Scholar 

  20. M. Gell-Mann and M. Lévy, Nuovo Cimento, 16, 705–726 (1960).

    Article  MATH  Google Scholar 

  21. J. Honerkamp and K. Meetz, Phys. Rev. D, 3, 1996–1998 (1971).

    Article  ADS  Google Scholar 

  22. K. G. Wilson, Phys. Rev. D, 10, 2445–2459 (1974).

    Article  ADS  Google Scholar 

  23. L. N. Lipatov, JETP Lett., 25, 104–106 (1977).

    ADS  Google Scholar 

  24. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B, 21, 3976–3998 (1980); R. Guida and J. Zinn-Justin, J. Phys. A, 31, 8103–8121 (1998); arXiv:cond-mat/9803240v3 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Zinn-Justin, Nucl. Phys. B, 192, 125–140 (1981); 218, 333–348 (1983).

    Article  ADS  Google Scholar 

  26. U. D. Jentschura and J. Zinn-Justin, J. Phys. A, 34, L253–L258 (2001); J. Zinn-Justin and U. D. Jentschura, Ann. Phys., 313, 197–267 (2004); arXiv:quant-ph/0501136v2 (2005); 313, 269–325 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Moshe and J. Zinn-Justin, Phys. Rep., 385, 69–228 (2003); arXiv:hep-th/0306133v1 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zinn-Justin.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 169, No. 1, pp. 20–31, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinn-Justin, J. The important role of functional integrals in modern physics. Theor Math Phys 169, 1380–1389 (2011). https://doi.org/10.1007/s11232-011-0114-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0114-y

Keywords

Navigation