Skip to main content
Log in

Effect of compressibility on the annihilation process

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the renormalization group in the perturbation theory, we study the influence of a random velocity field on the kinetics of the single-species annihilation reaction at and below its critical dimension d c = 2. The advecting velocity field is modeled by a Gaussian variable self-similar in space with a finite-radius time correlation (the Antonov-Kraichnan model). We take the effect of the compressibility of the velocity field into account and analyze the model near its critical dimension using a three-parameter expansion in ∈, Δ, and η, where ∈ is the deviation from the Kolmogorov scaling, Δ is the deviation from the (critical) space dimension two, and η is the deviation from the parabolic dispersion law. Depending on the values of these exponents and the compressiblity parameter α, the studied model can exhibit various asymptotic (long-time) regimes corresponding to infrared fixed points of the renormalization group. We summarize the possible regimes and calculate the decay rates for the mean particle number in the leading order of the perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. Lett., 75, 751–754 (1995); arXiv:hep-th/9505066v1 (1995).

    Article  ADS  Google Scholar 

  2. R. Kroon, H. Fleurent, and R. Sprik, Phys. Rev. E, 47, 2462–2472 (1993).

    Article  ADS  Google Scholar 

  3. T. Tél, A. de Moura, C. Grebogi, and G. Károlyi, Phys. Rep., 413, 91–196 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  4. B. P. Lee, J. Phys. A, 27, 2633–2652 (1994).

    Article  ADS  Google Scholar 

  5. M. W. Deem and J.-M. Park, Phys. Rev. E, 57, 2681–2685 (1998); arXiv:cond-mat/9707254v2 (1997); 58, 3223–3228 (1998); arXiv:cond-mat/9806195v1 (1998).

    Article  ADS  Google Scholar 

  6. M. Hnatich and J. Honkonen, Phys. Rev. E, 61, 3904–3911 (2000).

    Article  ADS  Google Scholar 

  7. M. J. E. Richardson and J. Cardy, J. Phys. A, 32, 4035–4045 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Celani, A. Lanotte, and A. Mazzino, Phys. Rev. E, 60, R1138–R1141 (1999).

    Article  ADS  Google Scholar 

  9. R. Benzi, M. H. Jensen, D. R. Nelson, P. Perlekar, S. Pigolotti, and F. Toschi, “Population dynamics in compressible flows,” arXiv:1203.6319v1 [q-bio.PE] (2012).

    Google Scholar 

  10. R. H. Kraichnan, Phys. Fluids, 11, 945–953 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. N. V. Antonov, Phys. D, 144, 370–386 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A, 38, R79–R131 (2005).

    Article  MATH  Google Scholar 

  13. M. Doi, J. Phys. A, 9, 1465–1478, 1479–1495 (1976).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 6, Fluid Mechanics, Nauka, Moscow (2006); English transl. prev. ed., Pergamon, Oxford (1987).

    Google Scholar 

  15. N. V. Antonov and J. Honkonen, Phys. Rev. E, 63, 036302 (2001); arXiv:nlin/0010029v1 (2000).

    Article  ADS  Google Scholar 

  16. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  17. L. Ts. Adzhemyan, N. V. Antonov, and J. Honkonen, Phys. Rev. E, 66, 036313 (2002); arXiv:nlin/0204044v1 (2002).

    Article  ADS  Google Scholar 

  18. M. Gnatich, J. Honkonen, and T. Lučivjanský, Theor. Math. Phys., 169, 1481–1488 (2011).

    Article  Google Scholar 

  19. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Intl. Ser. Monogr. Phys., Vol. 77), Oxford Univ. Press, Oxford (1989).

    Google Scholar 

  20. N. V. Antonov, Phys. Rev. E, 60, 6691–6707 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. N. Vasil’ev, Functional Methods in Quantum Field Theory and Statistical Physics, Gordon and Breach, Amsterdam (1998).

    Google Scholar 

  22. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London (1999).

    MATH  Google Scholar 

  23. M. Hnatič, J. Honkonen, and T. Lučivjanský, Eur. Phys. J. B (submitted).

  24. J. P. Bouchaud and A. Georges, Phys. Rep., 195, 127–293 (1990).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hnatich.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 176, No. 1, pp. 50–59, July, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hnatich, M., Honkonen, J. & Lučivjanský, T. Effect of compressibility on the annihilation process. Theor Math Phys 176, 873–880 (2013). https://doi.org/10.1007/s11232-013-0074-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0074-5

Keywords

Navigation