Skip to main content
Log in

Stringlike structures in Kerr-Schild geometry: The N=2 string, twistors, and the Calabi-Yau twofold

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The four-dimensional Kerr-Schild geometry contains two stringy structures. The first is the closed string formed by the Kerr singular ring, and the second is an open complex string obtained in the complex structure of the Kerr-Schild geometry. The real and complex Kerr strings together form a membrane source of the over-rotating Kerr-Newman solution without a horizon, a = J/m ≫ m. It was also recently found that the principal null congruence of the Kerr geometry is determined by the Kerr theorem as a quartic in the projective twistor space, which corresponds to an embedding of the Calabi-Yau twofold into the bulk of the Kerr geometry. We describe this embedding in detail and show that the four sheets of the twistorial K3 surface represent an analytic extension of the Kerr congruence created by antipodal involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Burinskii, Adv. High Energy Phys., 2013, 509749 (2013); arXiv:1211.6021v2 [hep-th] (2012).

    MathSciNet  Google Scholar 

  2. A. Burinskii, J. Phys. A, 43, 392001 (2010); arXiv:1003.2928v2 [hep-th] (2010).

    Article  MathSciNet  Google Scholar 

  3. D. D. Ivanenko and A. Ya. Burinskii, Izv. Vuz. Fiz., 5, 135 (1975).

    Google Scholar 

  4. A. Dabholkar, J. P. Gauntlett, J. A. Harvey, and D. Waldram, Nucl. Phys. B, 474, 85–121 (1996); arXiv:hep-th/9511053v1 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Burinskii, Phys. Rev. D, 52, 5826–5831 (1995); arXiv:hep-th/9504139v1 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Sen, Nucl. Phys. B, 388, 457–473 (1992); arXiv:hep-th/9206016v1 (1992).

    Article  ADS  Google Scholar 

  7. A. Sen, Phys. Rev. Lett., 69, 1006–1009 (1992); arXiv:hep-th/9204046v1 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. W. Lind and E. T. Newman, J. Math. Phys., 15, 1103–1112 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Burinskii and R. P. Kerr, “Nonstationary Kerr congruences,” arXiv:gr-qc/9501012v1 (1995).

    Google Scholar 

  10. A. Burinskii, Phys. Rev. D, 67, 124024 (2003); arXiv:gr-qc/0212048v3 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Ooguri and C. Vafa, Nucl. Phys. B, 361, 469–518 (1991); 367, 83–104 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Ya. Burinskii, “String-like structures in complex Kerr geometry,” in: Relativity Today (Gárdony, Hungary, 12–17 July 1992, R. P. Kerr and Z. Perjés, eds.), Akadémiai Kiadó, Budapest (1994), pp. 149–158; arXiv:gr-qc/9303003v1 (1993).

    Google Scholar 

  13. A. Burinskii, Phys. Rev. D, 70, 086006 (2004); arXiv:hep-th/0406063v4 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  14. L. M. Dyson, L. Järv, and C. V. Johnson, JHEP, 0205, 019 (2002); arXiv:hep-th/0112132v1 (2001).

    Article  ADS  Google Scholar 

  15. T. M. Adamo and E. T. Newman, Phys. Rev. D, 83, 044023 (2011); arXiv:1101.1052v1 [gr-qc] (2011).

    Article  ADS  Google Scholar 

  16. M. B. Green, J. Schwarz, and E. Witten, Superstring Theory, Vol. 1, Introduction, Cambridge Univ. Press, Cambridge (1987).

    Google Scholar 

  17. J. Barrett, G. W. Gibbons, M. J. Perry, C. N. Pope, and P. Ruback, Internat. J. Mod. Phys. A, 9, 1457–1493 (1994); arXiv:hep-th/9302073v1 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys., 10, 1842–1854 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge Monogr. Math. Phys., Vol. 6), Cambridge Univ. Press, Cambridge (1980).

    MATH  Google Scholar 

  20. R. Penrose, J. Math. Phys., 8, 345–366 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge Univ. Press, Cambridge (1986).

    Google Scholar 

  22. A. Burinskii, Gravit. Cosmol., 11, 301–304 (2005); arXiv:hep-th/0506006v2 (2005).

    MathSciNet  ADS  MATH  Google Scholar 

  23. A. Burinskii, Internat. J. Geom. Meth. Mod. Phys., 4, 437–456 (2007); arXiv:hep-th/0510246v3 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Burinskii, Gen. Rel. Grav., 41, 2281–2286 (2009); arXiv:0903.3162v3 [gr-qc] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambrige Univ. Press, London (1969).

    Google Scholar 

  26. A. Ya. Burinskii, Soviet Phys. JETP, 39, 193–195 (1974).

    MathSciNet  ADS  Google Scholar 

  27. E. Witten, Commun. Math. Phys., 252, 189–258 (2004); arXiv:hep-th/0312171v2 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. K. Becker, M. Becker, and J. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge Univ. Press, Cambridge (2007).

    Google Scholar 

  29. A. Chamblin and G. W. Gibbons, Phys. Rev. D, 55, 2177–2185 (1997); arXiv:gr-qc/9607079v2 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Burinskii, Theor. Math. Phys., 163, 782 (2010); arXiv:0911.5499v2 [hep-th] (2009).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. D’Adda and F. Lizzi, Phys. Lett. B, 191, 85–90 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Ya. Burinskii, Phys. Rev. D, 57, 2392–2396 (1998); arXiv:hep-th/9704102v2 (1997).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Burinskii.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 177, No. 2, pp. 247–263, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burinskii, A.Y. Stringlike structures in Kerr-Schild geometry: The N=2 string, twistors, and the Calabi-Yau twofold. Theor Math Phys 177, 1492–1504 (2013). https://doi.org/10.1007/s11232-013-0118-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0118-x

Keywords

Navigation