Skip to main content
Log in

Cabling procedure for the colored HOMFLY polynomials

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss using the cabling procedure to calculate colored HOMFLY polynomials. We describe how it can be used and how the projectors and \(\mathcal{R}\)-matrices needed for this procedure can be found. The constructed matrix expressions for the projectors and \(\mathcal{R}\)-matrices in the fundamental representation allow calculating the HOMFLY polynomial in an arbitrary representation for an arbitrary knot. The computational algorithm can be used for the knots and links with ¦Q¦m ≤ 12, where m is the number of strands in a braid representation of the knot and ¦Q¦ is the number of boxes in the Young diagram of the representation. We also discuss the justification of the cabling procedure from the group theory standpoint, deriving expressions for the fundamental \(\mathcal{R}\)-matrices and clarifying some conjectures formulated in previous papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. B, 62, 8–21 (1949).

    ADS  MATH  Google Scholar 

  2. Y. Aharonov and D. Bohm, Phys. Rev., 115, 485–491 (1959).

    ADS  MATH  MathSciNet  Google Scholar 

  3. S. Coleman, Aspects of Symmetry, Cambridge Univ. Press, Cambridge (1985).

    MATH  Google Scholar 

  4. V. Rubakov, Classical Theory of Gauge Fields, Princeton Univ. Press, Princeton, N. J. (2002).

    MATH  Google Scholar 

  5. A. M. Polyakov, Nucl. Phys. B, 120, 429–458 (1977).

    ADS  MathSciNet  Google Scholar 

  6. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19–52 (1994); arXiv:hep-th/9407087v1 (1994).

    ADS  MATH  MathSciNet  Google Scholar 

  7. N. Seiberg and E. Witten, Nucl. Phys. B, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994).

    ADS  MATH  MathSciNet  Google Scholar 

  8. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).

    ADS  MATH  MathSciNet  Google Scholar 

  9. M. F. Atiyah, “New invariants of 3- and 4-dimensional manifolds,” in: The Mathematical Heritage of Herman Weyl (Proc. Symp. Pure Math., Vol. 48, R. O. Wells Jr., ed.), Amer. Math. Soc., Providence, R. I. (1988), pp. 285–299.

    Google Scholar 

  10. M. A. Semenov-Tian-Shansky,, 37, 53–65 (1973); Math. USSR-Izv., 10, 535–563 (1976).

    Google Scholar 

  11. J. J. Duistermaat and G. J. Heckman, Inv. Math., 69, 259–268 (1982); 72, 153–158 (1983).

    ADS  MATH  MathSciNet  Google Scholar 

  12. A. Hietamhki, A. Yu. Morozov, A. J. Niemi, and K. Palo, Phys. Lett. B, 263, 417–424 (1991).

    ADS  MathSciNet  Google Scholar 

  13. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theories, Addison-Wesley, Reading, Mass. (1995).

    Google Scholar 

  14. S.-S. Chern and J. Simons, Ann. Math. (2), 99, 48–69 (1974).

    MATH  MathSciNet  Google Scholar 

  15. E. Witten, Commun. Math. Phys., 121, 351–399 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  16. L. H. Kauffman, The Interface of Knots and Physics (Proc. Symp. Appl. Math., Vol. 51), Amer. Math. Soc., Providence, R. I. (1996).

    MATH  Google Scholar 

  17. A. Mironov and A. Morozov, AIP Conf. Proc., 1483, 189–211 (2012); arXiv:1208.2282v1 [hep-th] (2012).

    ADS  Google Scholar 

  18. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, and A. Ocneanu, Bull. Amer. Math Soc., n.s., 12, 239–246 (1985).

    MATH  MathSciNet  Google Scholar 

  19. J. H. Przytycki and K. P. Traczyk, Kobe J. Math., 4, 115–139 (1987).

    MATH  MathSciNet  Google Scholar 

  20. W. B. R. Lickorish and K. C. Millett, Topology, 26, 107–141 (1987).

    MATH  MathSciNet  Google Scholar 

  21. S. Morrison, D. Bar-Natan, and M. Drugykh, “The Knot Atlas,” http://katlas.org/wiki/Main Page (2013).

    Google Scholar 

  22. A. Yu. Morozov and A. A. Roslyi, Private communication (1991).

  23. A. Morozov and A. Smirnov, Nucl. Phys. B, 835, 284–313 (2010); arXiv:1001.2003v2 [hep-th] (2010).

    ADS  MATH  MathSciNet  Google Scholar 

  24. A. Smirnov, “Notes on Chern-Simons theory in the temporal gauge,” in: The Most Unexpected at LHC and the Status of High Energy Frontier (The Subnuclear Series, Vol. 47, A. Zichichi, ed.), World Scientific, Singapore, pp. 489–498; arXiv:0910.5011v1 [hep-th] (2009).

    Google Scholar 

  25. D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, and A. V. Smirnov, Theor. Math. Phys., 172, 939–962 (2012); arXiv:1104.2589v3 [hep-th] (2011).

    MATH  Google Scholar 

  26. R. Kirby and P. Melvin, Invent. Math., 105, 473–545 (1991).

    ADS  MATH  MathSciNet  Google Scholar 

  27. M. Alvarez, J. M. F. Labastida, and E. Perez, Nucl. Phys. B, 488, 677–718 (1997); arXiv:hep-th/9607030v1 (1996).

    ADS  MATH  MathSciNet  Google Scholar 

  28. J. M. F. Labastida, and E. Perez, J. Math. Phys., 39, 5183–5198 (1998); arXiv:hep-th/9710176v1 (1997).

    ADS  MATH  MathSciNet  Google Scholar 

  29. R. Gopakumar and C. Vafa, Adv. Theor. Math. Phys., 3, 1415–1443 (1999); arXiv:hep-th/9811131v1 (1998).

    MATH  MathSciNet  Google Scholar 

  30. H. Ooguri and C. Vafa, Nucl. Phys. B, 577, 419–438 (2000); arXiv:hep-th/9912123v3 (1999).

    ADS  MATH  MathSciNet  Google Scholar 

  31. J. Labastida and M. Mariño, Commun. Math. Phys., 217, 423–449 (2001); arXiv:hep-th/0004196v3 (2000); “A new point of view in the theory of knot and link invariants,” arXiv:math/0104180v4 (2001).

    ADS  MATH  Google Scholar 

  32. M. Marino and C. Vafa, “Framed knots at large N,” in: Orbifolds in Mathematics and Physics (Contemp. Math., Vol. 310), Amer. Math. Soc., Providence, R. I. (2002), pp. 185–204; arXiv:hep-th/0108064v1 (2001).

    Google Scholar 

  33. M. Mariño, “Chern-Simons theory, the 1/N expansion, and string theory,” in: Chern-Simons Gauge Theory: 20 Years After (AMS/IP Stud. Adv. Math., Vol. 50), Amer. Math. Soc., Providence, R. I. (2011), pp. 243–260; arXiv:1001.2542v3 [hep-th] (2010).

    Google Scholar 

  34. M. Mariño, “Lectures on non-perturbative effects in large N gauge theories, matrix models, and strings,” arXiv:1206.6272v1 [hep-th] (2012).

    Google Scholar 

  35. R. K. Kaul, Commun. Math. Phys., 162, 289–319 (1994); arXiv:hep-th/9305032v1 (1993).

    ADS  MATH  MathSciNet  Google Scholar 

  36. R. K. Kaul and T. R. Govindarajan, Nucl. Phys. B, 380, 293–333 (1992); arXiv:hep-th/9111063v1 (1991).

    ADS  MATH  MathSciNet  Google Scholar 

  37. P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 402, 548–566 (1993); arXiv:hep-th/9212110v1 (1992).

    ADS  MathSciNet  Google Scholar 

  38. P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Nucl. Phys. B, 422, 291–306 (1994); arXiv:hep-th/9312215v1 (1993).

    ADS  MATH  MathSciNet  Google Scholar 

  39. P. Ramadevi and T. Sarkar, Nucl. Phys. B, 600, 487–511 (2001); arXiv:hep-th/0009188v4 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  40. G. Moore and N. Seiberg, Phys. Lett. B, 220, 422–430 (1989).

    ADS  MathSciNet  Google Scholar 

  41. V. V. Fock and Ya. I. Kogan, Modern Phys. Lett. A, 5, 1365–1372 (1990).

    ADS  MATH  MathSciNet  Google Scholar 

  42. J. M. F. Labastida and A. V. Ramallo, Phys. Lett. B, 227, 92–102 (1989); Nucl. Phys. B Proc. Suppl., 16, 594–596 (1990).

    ADS  MathSciNet  Google Scholar 

  43. L. Alvarez-Gaumé, C. Gomez, and G. Sierra, Phys. Lett. B, 220, 142–152 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  44. A. S. Schwarz, Commun. Math. Phys., 67, 1–16 (1979).

    ADS  MATH  Google Scholar 

  45. V. F. R. Jones, Bull. Amer. Math. Soc., n.s., 12, 103–111 (1985).

    MATH  MathSciNet  Google Scholar 

  46. V. F. R. Jones, Ann. Math. (2), 126, 335–388 (1987).

  47. L. Kauffman, Topology, 26, 395–407 (1987).

    MATH  MathSciNet  Google Scholar 

  48. P. Borhade, P. Ramadevi, and T. Sarkar, Nucl. Phys. B, 678, 656–681 (2004); arXiv:hep-th/0306283v4 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  49. Zodinmawia and P. Ramadevi, Nucl. Phys. B, 870, 205–242 (2013); arXiv:1107.3918v7 [hep-th] (2011).

    ADS  MATH  MathSciNet  Google Scholar 

  50. Zodinmawia and P. Ramadevi, “Reformulated invariants for non-torus knots and links,” arXiv:1209.1346v1 [hep-th] (2012).

    Google Scholar 

  51. S. Nawata, P. Ramadevi, Zodinmawia, and X. Sun, JHEP, 1211, 157 (2012); arXiv:1209.1409v4 [hep-th] (2012).

    ADS  MathSciNet  Google Scholar 

  52. S. Nawata, P. Ramadevi, and Zodinmawia, “Multiplicity-free quantum 6j-symbols for U q(sl N),” arXiv: 1302.5143v3 [hep-th] (2013).

    Google Scholar 

  53. S. Nawata, P. Ramadevi, and Zodinmawia, “Colored HOMFLY polynomials from Chern-Simons theory,” arXiv:1302.5144v4 [hep-th] (2013).

    Google Scholar 

  54. S. Gukov, A. Schwarz, and C. Vafa, Lett. Math. Phys., 74, 53–74 (2005); arXiv:hep-th/0412243v3 (2004).

    ADS  MATH  MathSciNet  Google Scholar 

  55. N. M. Dunfield, S. Gukov, and J. Rasmussen, Experiment. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005).

    MATH  MathSciNet  Google Scholar 

  56. E. Gorsky, S. Gukov, and M. Stosic, “Quadruply-graded colored homology of knots,” arXiv:1304.3481v1 [math.QA] (2013).

    Google Scholar 

  57. S. Arthamonov, A. Mironov, and A. Morozov, “Differential hierarchy and additional grading of knot polynomials,” arXiv:1306.5682v1 [hep-th] (2013).

    Google Scholar 

  58. M. Rosso and V. F. R. Jones, J. Knot Theory Ramifications, 2, 97–112 (1993).

    MATH  MathSciNet  Google Scholar 

  59. X.-S. Lin and H. Zheng, Trans. Amer. Math. Soc., 362, 1–18 (2010); arXiv:math/0601267v1 (2006).

    MATH  MathSciNet  Google Scholar 

  60. S. Stevan, Ann. Henri Poincaré, 11, 1201–1224 (2010); arXiv:1003.2861v2 [hep-th] (2010).

    ADS  MATH  MathSciNet  Google Scholar 

  61. P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, JHEP, 1303, 021 (2013); arXiv:1106.4305v3 [hep-th] (2011).

    ADS  MathSciNet  Google Scholar 

  62. M. Aganagic and Sh. Shakirov, “Knot homology from refined Chern-Simons theory,” arXiv:1105.5117v2 [hepth] (2011).

    Google Scholar 

  63. M. Aganagic and Sh. Shakirov, “Refined Chern-Simons theory and topological string,” arXiv:1210.2733v1 [hep-th] (2012).

    Google Scholar 

  64. A. Mironov, A. Morozov, Sh. Shakirov, and A. Sleptsov, JHEP, 1220, 70 (2012); arXiv:1201.3339v2 [hep-th] (2012).

    MathSciNet  Google Scholar 

  65. A. Mironov, A. Morozov, and Sh. Shakirov, J. Phys. A, 45, 355202 (2012); arXiv:1203.0667v1 [hep-th] (2012).

    MathSciNet  Google Scholar 

  66. E. Gorsky, “q, t-Catalan numbers and knot homology,” in: Zeta Functions in Algebra and Geometry (Contemp. Math., Vol. 566, A. Campillo, G. Cardona, A. Melle-Hernandez, W. Veys, and W. A. Zuniga-Galindo, eds.), Amer. Math. Soc., Providence, R. I. (2012), pp. 213–232; arXiv:1003.0916v3 [math.AG] (2010).

    Google Scholar 

  67. I. Cherednik, “Jones polynomials of torus knots via DAHA,” arXiv:1111.6195v10 [math.QA] (2011).

    Google Scholar 

  68. A. Oblomkov, J. Rasmussen, and V. Shende, “The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link,” arXiv:1201.2115v1 [math.AG] (2012).

    Google Scholar 

  69. E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende, “Torus knots and the rational DAHA,” arXiv:1207.4523v1 [math.RT] (2012).

    Google Scholar 

  70. E. Gorsky and A. Negut, “Refined knot invariants and Hilbert schemes,” arXiv:1304.3328v2 [math.RT] (2013).

    Google Scholar 

  71. S. Garoufalidis, “On the characteristic and deformation varieties of a knot,” in: Proceedings of the Casson Fest (Geom. Topol. Monogr., Vol. 7, C. Gordon and Y. Rieck, eds.), Geom. Topol. Publ., Coventry, UK (2004), pp. 291–309; arXiv:math/0306230v4 (2003).

    Google Scholar 

  72. A. Brini, B. Eynard, and M. Mariño, Ann. Henri Poincaré, 13, 1873–1910 (2012); arXiv:1105.2012v1 [hep-th] (2011).

    ADS  MATH  Google Scholar 

  73. R. Gelca, Math. Proc. Cambridge Philos. Soc., 133, 311–323 (2002); arXiv:math/0004158v1 (2000).

    ADS  MATH  MathSciNet  Google Scholar 

  74. R. Gelca and J. Sain, J. Knot Theory Ramifications, 12, 187–201 (2003); arXiv:math/0201100v1 (2002).

    MATH  MathSciNet  Google Scholar 

  75. S. Gukov, Commun. Math. Phys., 255, 577–627 (2005); arXiv:hep-th/0306165v1 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  76. H. Fuji, S. Gukov, and P. Sulkowski, “Volume conjecture: Refined and categorified,” arXiv:1203.2182v1 [hepth] (2012).

    Google Scholar 

  77. H. Fuji, S. Gukov, M. Stosic, and P. Sulkowski, “3d Analogs of Argyres-Douglas theories and knot homologies,” arXiv:1209.1416v1 [hep-th] (2012).

    Google Scholar 

  78. H. R. Morton and H. J. Ryder, “Mutants and SU(3, q) invariants,” in: The Epstein Birthday Schrift (Geom. Topol. Monogr., Vol. 1, I. Rivin, C. Rourke, and C. Series, eds.), Geom. Topol. Publ., Coventry, UK (1998), pp. 365–381; arXiv:math/9810197v1 (1998).

    Google Scholar 

  79. H. R. Morton and M. Rampichini, “Mutual braiding and the band presentation of braid groups,” in: Knots in Hellas’98 (Ser. Knots and Everything, Vol. 24, C. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, and J. H. Przytycki, eds.), World Scientific, Singapore (2000), pp. 335–346; arXiv:math/9907017v1 (1999).

    Google Scholar 

  80. H. R. Morton and R. J. Hadji, Algebr. Geom. Topol., 2, 11–32 (2002); arXiv:math/0106207v2 (2001).

    MathSciNet  Google Scholar 

  81. H. Morton and S. Lukac, J. Knot Theory Ramifications, 12, 395–416 (2003); arXiv:math/0108011v1 (2001).

    MATH  MathSciNet  Google Scholar 

  82. V. G. Turaev, Invent. Math., 92, 527–553 (1988).

    ADS  MATH  MathSciNet  Google Scholar 

  83. N. Yu. Reshetikhin and V. G. Turaev, Commun. Math. Phys., 127, 1–26 (1990).

    ADS  MATH  MathSciNet  Google Scholar 

  84. E. Guadagnini, M. Martellini, and M. Mintchev, “Chern-Simons field theory and quantum groups,” in: Quantum Groups (Lect. Notes Phys., Vol. 370, H.-D. Doebner and J.-D. Hennig, eds.), Springer, Berlin (1990), pp. 307–317; Phys. Lett. B, 235, 275–281 (1990).

    Google Scholar 

  85. A. Mironov, A. Morozov, and And. Morozov, “Character expansion for HOMFLY polynomials: I. Integrability and difference equations,” in: Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds.), World Scientific, Singapore (2013), pp. 101–118; arXiv:1112.5754v1 [hep-th] (2011).

    Google Scholar 

  86. A. Mironov, A. Morozov, and And. Morozov, JHEP, 1203, 034 (2012); arXiv:1112.2654v2 [math.QA] (2011).

    ADS  MathSciNet  Google Scholar 

  87. H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, Internat. J. Mod. Phys. A, 27, 1250099 (2012); arXiv:1204.4785v4 [hep-th] (2012).

    ADS  MathSciNet  Google Scholar 

  88. H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, JHEP, 1207, 131 (2012); arXiv:1203.5978v5 [hep-th] (2012).

    ADS  MathSciNet  Google Scholar 

  89. H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, Internat. J. Mod. Phys. A, 28, 1340009 (2013); arXiv:1209.6304v1 [math-ph] (2012).

    ADS  MathSciNet  Google Scholar 

  90. A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Nucl. Phys. B, 868, 271–313 (2013); arXiv: 1207.0279v2 [hep-th] (2012).

    ADS  MATH  MathSciNet  Google Scholar 

  91. A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, “Knot polynomials in the first non-symmetric representation,” arXiv:1211.6375v1 [hep-th] (2012).

    Google Scholar 

  92. A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, Adv. High Energy Phys., 2013, 931830 (2013); arXiv:1304.1486v1 [hep-th] (2013).

    MathSciNet  Google Scholar 

  93. A. Mironov, A. Morozov, and And. Morozov, “Evolution method and “differential hierarchy’ of colored knot polynomials,” arXiv:1306.3197v1 [hep-th] (2013).

    Google Scholar 

  94. W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry, Cambridge (1997).

    MATH  Google Scholar 

  95. A. Mironov, A. Morozov, and A. Sleptsov, Theor. Math. Phys., 177, 1435–1470 (2013); arXiv:1303.1015v1 [hep-th] (2013).

    Google Scholar 

  96. A. Mironov, A. Morozov, and A. Sleptsov, Eur. Phys. J. C, 73, 2492 (2013); arXiv:1304.7499v1 [hep-th] (2013).

    ADS  Google Scholar 

  97. C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York (1994).

    MATH  Google Scholar 

  98. A. Anokhina and A. Morozov, “Cabling procedure for the colored HOMFLY polynomials,” arXiv:1307.2216v1 [hep-th] (2013).

    Google Scholar 

  99. N. Ya. Vilenkin and A. U. Klimyk, “Representations of Lie groups and special functions,” in: Noncommutative Harmonic Analysis — 2 (Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., Vol. 59), VINITI, Moscow (1990), pp. 145–264.

    Google Scholar 

  100. V. V. Prasolov and A. B. Sossinski, Knots, Links, Braids, and 3-Manifolds [in Russian], MTsMNO, Moscow (1997); English transl. (Transl. Math. Monogr., Vol. 154), Amer. Math. Soc., Providence, R. I. (1997).

    MATH  Google Scholar 

  101. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1998).

    MATH  Google Scholar 

  102. X.-S. Lin and H. Zheng, Trans. Amer. Math. Soc., 362, 1–18 (2010); arXiv:math.QA/0601267v1 (2006).

    MATH  MathSciNet  Google Scholar 

  103. S. Zhu, “Colored HOMFLY polynomial via skein theory,” arXiv:1206.5886v1 [math.GT] (2012).

    Google Scholar 

  104. P. P. Kulish and N. Yu. Reshetikhin, J. Soviet Math., 34, 1948–1971 (1986).

    Google Scholar 

  105. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), pp. 61–119.

    Google Scholar 

  106. M. Jimbo, T. Miwa, and M. Okado, Modern Phys. Lett. B, 1, 73–79 (1987).

    ADS  MATH  Google Scholar 

  107. A. Morozov, JHEP, 1212, 116 (2012); arXiv:1208.3544v1 [hep-th] (2012).

    ADS  Google Scholar 

  108. A. Morozov, JETP Letters, 97, 171–172 (2013); arXiv:1211.4596v2 [hep-th] (2012).

    ADS  Google Scholar 

  109. M. Khovanov, Duke Math. J., 101, 359–426 (2000).

    MATH  MathSciNet  Google Scholar 

  110. D. Bar-Natan, Algebr. Geom. Topol., 2, 337–370 (2002); arXiv:math/0201043v3 (2002).

    MATH  MathSciNet  Google Scholar 

  111. M. Khovanov and L. Rozhansky, Fund. Math., 199, 1–91 (2008); arXiv:math.QA/0401268v2 (2004).

    MATH  MathSciNet  Google Scholar 

  112. M. Khovanov and L. Rozhansky, Geom. Topol., 12, 1387–1425 (2008); arXiv:math.QA/0505056v2 (2005).

    MATH  MathSciNet  Google Scholar 

  113. N. Carqueville and D. Murfet, “Computing Khovanov-Rozansky homology and defect fusion,” arXiv: 1108.1081v2 [math.QA] (2011).

    Google Scholar 

  114. V. Dolotin and A. Morozov, JHEP, 1301, 065 (2013); arXiv:1208.4994v1 [hep-th] (2012).

    ADS  MathSciNet  Google Scholar 

  115. V. Dolotin and A. Morozov, J. Phys. Conf. Ser., 411, 012013 (2013); arXiv:1209.5109v1 [math-ph] (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Anokhina.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 178, No. 1, pp. 3–68, January, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anokhina, A.S., Morozov, A.A. Cabling procedure for the colored HOMFLY polynomials. Theor Math Phys 178, 1–58 (2014). https://doi.org/10.1007/s11232-014-0129-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0129-2

Keywords

Navigation