Skip to main content

Advertisement

Log in

An energy optimization in wireless sensor networks by using genetic algorithm

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are used for several commercial and military applications, by collecting, processing and distributing a wide range of data. Maximizing the battery life of WSNs is crucial in improving the performance of WSN. In the present study, different variations of genetic algorithm (GA) method have been implemented independently on energy models for data communication of WSNs with the objective to find out the optimal energy \(\hbox {(E)}\) consumption conditions. Each of the GA methods results in an optimal set of parameters for minimum energy consumption in WSN related to the type of selected energy model for data communication, while the best performance of the GA method [energy consumption \((\hbox {E}=3.49\times 10^{-4}\,\hbox {J})\)] is obtained in WSN for communication distance (d) \({\ge }87\,\hbox {m}\) in between the sensor cluster head and a base station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang, K. (2014). Wireless sensor networks—Principles, design and applications. London: Springer.

    Google Scholar 

  2. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  3. Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.

    Article  Google Scholar 

  4. Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. Journal of Supercomputing, 68(1), 1–48.

    Article  Google Scholar 

  5. Demigha, O., Hidouci, W. K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys and Tutorials, 15(3), 1210–1222.

    Article  Google Scholar 

  6. Abo-Zahhad, M., Amin, O., Farrag, M., & Ali, A. (2014). Survey on energy consumption models in wireless sensor networks. Open Transaction on Wireless Sensor Network, 1(1), 1–4.

    Google Scholar 

  7. Basaran, C., & Kang, K. D. (2009). Quality of service in wireless sensor networks. In S. C. Misra, I. Woungang, & S. Misra (Eds.), Guide to wireless sensor networks (pp. 305–321). London: Springer.

    Chapter  Google Scholar 

  8. Mansourkiaie, F., & Ahmed, M. H. (2015). Cooperative routing in wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 17(2), 604–626.

    Article  Google Scholar 

  9. Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 54(4), 2419–2436.

    Article  Google Scholar 

  10. Bajaber, F., & Awan, I. (2014). An efficient cluster-based communication protocol for wireless sensor networks. Telecommunication Systems, 55(3), 387–401.

    Article  Google Scholar 

  11. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  12. Mini, R. A., & Loureiro, A. A. (2009). Energy in wireless sensor networks. In B. Garbinato, H. Miranda, & L. Rodrigues (Eds.), Middleware for network eccentric and mobile applications (pp. 3–24). Berlin: Springer.

    Chapter  Google Scholar 

  13. Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.

    Article  Google Scholar 

  14. Karahan, A., Erturk, I., Atmaca, S., & Cakici, S. (2014). Effects of transmit-based and receive-based slot allocation strategies on energy efficiency in WSN MACs. Ad Hoc Networks, 13, 404–413.

    Article  Google Scholar 

  15. Chidean, M. I., Morgado, E., Sanromán-Junquera, M., Ramiro-Bargueno, J., Ramos, J., & Caamaño, A. J. (2016). Energy efficiency and quality of data reconstruction through data-coupled clustering for self-organized large-scale WSNs. IEEE Sensors Journal, 16(12), 5010–5020.

    Article  Google Scholar 

  16. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  17. Snajder, B., Jelicic, V., Kalafatic, Z., & Bilas, V. (2016). Wireless sensor node modelling for energy efficiency analysis in data-intensive periodic monitoring. Ad Hoc Networks, 49, 29–41.

    Article  Google Scholar 

  18. Raza, U., Bogliolo, A., Freschi, V., Lattanzi, E., & Murphy, A. L. (2016). A two-prong approach to energy-efficient WSNs: Wake-up receivers plus dedicated, model-based sensing. Ad Hoc Networks, 45, 1–12.

    Article  Google Scholar 

  19. Norouzi, A., & Zaim, A. H. (2014). Genetic algorithm application in optimization of wireless sensor networks. The Scientific World Journal, 2014, 1–15.

    Article  Google Scholar 

  20. Peiravi, A., Mashhadi, H. R., & Javadi, S. H. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126.

    Article  Google Scholar 

  21. Li, Z., & Lei, L. (2009). Sensor node deployment in wireless sensor networks based on improved particle swarm optimization. In Proceedings of ASEMD (pp. 215–217).

  22. Zungeru, A. M., Seng, K. P., Ang, L. M., & Chong Chia, W. (2013). Energy efficiency performance improvements for ant-based routing algorithm in wireless sensor networks. Journal of Sensors, 2013, 1–17.

    Article  Google Scholar 

  23. Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.

    Article  Google Scholar 

  24. Zeng, B., & Dong, Y. (2016). An improved harmony search based energy-efficient routing algorithm for wireless sensor networks. Applied Soft Computing, 41, 135–147.

    Article  Google Scholar 

  25. Chang, W. L., Zeng, D., Chen, R. C., & Guo, S. (2015). An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. International Journal of Machine Learning and Cybernetics, 6(3), 375–383.

    Article  Google Scholar 

  26. Zhu, N., & Vasilakos, A. V. (2016). A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, 22(4), 1199–1220.

    Article  Google Scholar 

  27. Catarinucci, L., Colella, R., Del Fiore, G., Mainetti, L., Mighali, V., Patrono, L., et al. (2014). A cross-layer approach to minimize the energy consumption in wireless sensor networks. International Journal of Distributed Sensor Networks, 10(1), 268284.

    Article  Google Scholar 

  28. Shareef, A., & Zhu, Y. (2010). Energy modeling of wireless sensor nodes based on Petri nets. In Proceedings of ICPP (pp. 101–110).

  29. Abdul-Salaam, G., Abdullah, A. H., Anisi, M. H., Gani, A., & Alelaiwi, A. (2016). A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommunication Systems, 61(1), 159–179.

    Article  Google Scholar 

  30. Du, W., Mieyeville, F., & Navarro, D. (2010). Modeling energy consumption of wireless sensor networks by system. In Proceedings of ICSNC (pp. 94–98).

  31. Keskin, M. E., Altınel, İ. K., Aras, N., & Ersoy, C. (2014). Wireless sensor network lifetime maximization by optimal sensor deployment, activity scheduling, data routing and sink mobility. Ad Hoc Networks, 17, 18–36.

    Article  Google Scholar 

  32. He, S., Chen, J., Yau, D. K., & Sun, Y. (2012). Cross-layer optimization of correlated data gathering in wireless sensor networks. IEEE Transactions on Mobile Computing, 11(11), 1678–1691.

    Article  Google Scholar 

  33. Liu, H., Chu, X., Leung, Y. W., & Du, R. (2013). Minimum-cost sensor placement for required lifetime in wireless sensor-target surveillance networks. IEEE Transactions on Parallel and Distributed Systems, 24(9), 1783–1796.

    Article  Google Scholar 

  34. Gu, Y., Ji, Y., Li, J., & Zhao, B. (2013). ESWC: Efficient scheduling for the mobile sink in wireless sensor networks with delay constraint. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1310–1320.

    Article  Google Scholar 

  35. Melodia, T., Pompili, D., Gungor, V. C., & Akyildiz, I. F. (2007). Communication and coordination in wireless sensor and actor networks. IEEE Transactions on Mobile Computing, 6(10), 1116–1129.

    Article  Google Scholar 

  36. Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.

    Article  Google Scholar 

  37. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  38. Zhang, H., Zhang, S., & Bu, W. (2014). A clustering routing protocol for energy balance of wireless sensor network based on simulated annealing and genetic algorithm. International Journal of Hybrid Information Technology, 7(2), 71–82.

    Article  Google Scholar 

  39. Goldberg, D. E. (2006). Genetic algorithms. New Delhi: Pearson Education.

    Google Scholar 

  40. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  41. Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. Toronto: Wiley.

    Google Scholar 

  42. Norouzi, A., Babamir, F. S., & Zaim, A. H. (2011). A new clustering protocol for wireless sensor networks using genetic algorithm approach. Wireless Sensor Network, 3(11), 362–370.

    Article  Google Scholar 

  43. Naranjo, P. G. V., Shojafar, M., Mostafaei, H., Pooranian, Z., & Baccarelli, E. (2016). P-SEP: A prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. The Journal of Supercomputing, 73(2), 733–755.

    Article  Google Scholar 

  44. Umar, M. M., Mehmood, A., & Song, H. (2016). SeCRoP: Secure cluster head centered multi-hop routing protocol for mobile ad hoc networks. Security and Communication Networks, 9(16), 3378–3387.

    Article  Google Scholar 

  45. Ahmadi, A., Shojafar, M., Hajeforosh, S. F., Dehghan, M., & Singhal, M. (2014). An efficient routing algorithm to preserve k-coverage in wireless sensor networks. The Journal of Supercomputing, 68(2), 599–623.

    Article  Google Scholar 

  46. Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors, 15(11), 28603–28626.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge reviewers for their appreciated comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kr. Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S.K., Eyong, E.M. An energy optimization in wireless sensor networks by using genetic algorithm. Telecommun Syst 67, 113–121 (2018). https://doi.org/10.1007/s11235-017-0324-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0324-1

Keywords

Navigation