Skip to main content

Advertisement

Log in

Steam Reforming of Ethanol on Ferrites

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The results of the authors’ investigations of steam reforming of ethanol (SRE) on nanosized ferrites with spinel structure MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) are summarized. The highest yields of the target product hydrogen were obtained on Mg, Mn, and Fe ferrites. A close to stoichiometric yield of H2 was obtained on nanosized MnFe2O4. A probable scheme for the mechanism of SRE, containing redox and acid–base stages, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Sun and Y. Wang, ACS Catal., 4, 1078-1090 (2014).

    Article  CAS  Google Scholar 

  2. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energy Fuels, 19, 2098-2106 (2005).

    Article  CAS  Google Scholar 

  3. P. D. Vaidya and A. E. Rodrigues, Chem. Eng. J., 117, 39-49 (2006).

    Article  CAS  Google Scholar 

  4. M. Ni, D. Y. C. Leung, and M. K. H. Leung, Int. J. Hydrogen Energy, 32, 3238-3247 (2007).

    Article  CAS  Google Scholar 

  5. Y. I. Pyatnitsky, L. Yu. Dolgykh, I. L. Stolyarchuk, and P. E. Strizhak, Teor. Éksp. Khim., 49, No. 5, 265-283 (2013). [Theor. Exp. Chem., 49, No. 5, 277-297 (2013) (English translation).]

  6. J. Llorca, P. R. Piscina, J. Sales, et al., Chem. Commun., 641-642 (2001).

  7. M. N. Barroso, M. F. Gomez, L. A. Arrua, et al., Catal. Lett., 109, 13-19 (2006).

    Article  CAS  Google Scholar 

  8. H. Muroyama, R. Nakase, T. Matsui, et al., Int. J. Hydrogen Energy, 35, 1575-1581 (2010).

    Article  CAS  Google Scholar 

  9. Z. Li, W. Yi, and H. Qun, Trans. Nonferrous Met. Soc. China, 19, 1444-1449 (2009).

    Article  Google Scholar 

  10. S. Q. Chen and Y. Liu, Int. J. Hydrogen Energy, 34, 4735-4746 (2009).

    Article  CAS  Google Scholar 

  11. R. Espinal, E. Taboada, E. Molins, et al., Appl. Catal. B, 127, 59-67 (2012).

    Article  CAS  Google Scholar 

  12. V. A. de la Pena O’Shea, R. Nafria, P. Ramýrez de la Piscina, et al., Int. J. Hydrogen Energy, 33, 3601-3606 (2008).

    Article  Google Scholar 

  13. I. L. Stolyarchuk, L. Yu. Dolgikh, I. V. Vasilenko, et al. Teor. Éksp. Khim., 48, No. 2, 119-125 (2012). [Theor. Exp. Chem., 48, No. 2, 129-134 (2012) (English translation).]

  14. Y. I. Pyatnitsky, L. Yu. Dolgykh, I. L. Stolyarchuk, and P. E. Strizhak, Teor. Éksp. Khim., 49, No. 2, 99-103 (2013). [Theor. Exp. Chem., 49, No. 2, 109-114 (2013) (English translation).]

  15. L. Yu. Dolgykh, I. L. Stolyarchuk, I. V. Vasylenko, et al. Teor. Éksp. Khim., 49, No. 3, 172-177 (2013). [Theor. Exp. Chem., 49, No. 3, 185-192 (2013) (English translation).]

  16. L. Yu. Dolgykh, I. L. Stolyarchuk, and L. A. Staraya, Teor. Éksp. Khim., 50, No. 4, 244-247 (2014). [Theor. Exp. Chem., 50, No. 4, 245-249 (2014) (English translation).]

  17. I. L. Stolyarchuk, L. Yu. Dolgikh, I. V. Vasilenko, et al., Alternative Sources of Feedstock and Fuel. Collection of Scientific Proceedings of Academy of Sciences of Belarus, Institute of Chemistry of New Materials,V. E. Agabekov, K. N. Gusak, Zh. V. Ignatovich (eds.) [in Russian], Belaruskaya Navuka (2014), No. 1, pp. 186-196.

  18. L. Yu. Dolgykh, I. L. Stolyarchuk, L. A. Staraya, et al., Teor. Éksp. Khim., 51, No. 4, 225-229 (2015). [Theor. Exp. Chem., 51, No. 4, 230-235 (2015) (English translation).]

  19. L. Yu. Dolgykh, I. L. Stolyarchuk, L. A. Staraya, et al., Adsorp. Sci. Technol., 33, Nos. 6-8, 715-721 (2015).

    Article  CAS  Google Scholar 

  20. I. L. Stolyarchuk, L. Yu. Dolgykh, I. V. Vasylenko, et al., Teor. Éksp. Khim., 52, No. 4, 244-248 (2016). [Theor. Exp. Chem., 52, No. 4, 246-251 (2016) (English translation).]

  21. L. Yu. Dolgikh, Y. I. Pyatnytsky, and P. E. Strizhak, Bioethanol and Beyond: Advances in Production Process and Future Directions, M. Brienzo (ed.), Nova Sci., New York (2018), Ch. 14, pp. 381-427.

  22. I. V. Vasilenko, K. S. Gavrilenko, I. E. Kotenko, et al., Teor. Éksp. Khim., 43, No. 5, 323-329 (2007). [Theor. Exp. Chem., 43, No. 5, 353-358 (2007) (English translation).]

  23. L. V. Mattos, G. Jacobs, B. H. Davis, and F. B. Noronha, Chem. Rev., 112, 4094-4123 (2012).

    Article  CAS  Google Scholar 

  24. P. Ramýrez de la Piscina and N. Homs, Chem. Soc. Rev., 37, 2459-2467 (2008).

    Article  Google Scholar 

  25. C. Trevisanut, M. Mari, J. M. M. Millet, and F. Cavani, J. Hydrogen Energy, 40, 5264-5271 (2015).

    Article  CAS  Google Scholar 

  26. C. Trevisanut, F. Bosselet, F. Cavani, and J. M. M. Millet, Catal. Sci. Technol., 5, 1280-1289 (2015).

    CAS  Google Scholar 

  27. N. M. Schweitzer, B. Hu, U. Das, et al., ACS Catal., 4, 1091-1092 (2014).

    Article  CAS  Google Scholar 

  28. B. Hu, A. Getsoian, N. M. Schweitzer, et al., J. Catal., 322, 24-37 (2015).

    Article  CAS  Google Scholar 

  29. B. Hu, N. M. Schweitzer, G. Zhang, et al., ACS Catal., 5, 3494-3503 (2015).

    Article  CAS  Google Scholar 

  30. D. J. Elliott and F. Pennella, J. Catal., 119, 359-367 (1989).

    Article  CAS  Google Scholar 

  31. T. Nishiguchi, T. Matsumoto, H. Kanai, et al., Appl. Catal. A, 279, 273-277 (2005).

    Article  CAS  Google Scholar 

  32. K. Inui, T. Kurabayashi, and S. Sato, J. Catal., 212, 207 (2002).

    Article  CAS  Google Scholar 

  33. I. Charkendorff and W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley-VCH, Weinheim (2003).

    Book  Google Scholar 

  34. J. P. Jacobs, A. Maltha, J. G. H. Reitjes, et al., J. Catal., 47, 294-300 (1994).

    Article  Google Scholar 

  35. C. G. Ramankutty and S. Sugunan, Appl. Catal. A, 218, 39-51 (2001).

    Article  CAS  Google Scholar 

  36. C. G. Ramankutty, S. Sugunan, B. Thomas, et al., J. Mol. Catal. A, 187, 105-117 (2002).

    Article  CAS  Google Scholar 

  37. H. Song, L. Zhang, and U. S. Ozkan, Top. Catal., 55, 1324-1331 (2012).

    Article  CAS  Google Scholar 

  38. G. Garbarino, C. Wang, I. Valsamakis, et al., Appl. Catal. B, 174/175, 21-34 (2015).

    Article  Google Scholar 

  39. G. Busca, Chem. Rev., 110, 2217-2249 (2010).

    Article  CAS  Google Scholar 

  40. C. L. Kibby and W. K. Hall, J. Catal., 29, 144-159 (1973).

    Article  CAS  Google Scholar 

  41. K. Tanabe, M. Misono, Y. Ono, and H. Hattori, New Solid Acids and Bases, Kodansha-Elsevier, Tokyo (1989).

    Google Scholar 

  42. P. Canesson and M. Blanchard, J. Catal., 42, 205-212 (1979).

    Article  Google Scholar 

  43. J. E. Sutton, W. Guo, M. A. Katsoulakis, et al., Nature Chem., 8, 331-337 (2016).

    Article  CAS  Google Scholar 

Download references

The authors express their gratitude to I. V. Vasylenko for assistance in the synthesis of the catalysts and for investigating the samples by XRD, electron diffraction, and TEM. The work was conducted with financial support from a comprehensive target program of scientific investigations of the National Academy of Sciences of Ukraine “Fundamental aspects of renewable hydrogen energy and fuel cell technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Dolgikh.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 5, pp. 318-325, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgikh, L.Y., Stolyarchuk, I.L., Staraya, L.A. et al. Steam Reforming of Ethanol on Ferrites. Theor Exp Chem 54, 349–357 (2018). https://doi.org/10.1007/s11237-018-9580-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-018-9580-8

Key words

Navigation