Skip to main content
Log in

High levels of high sensitivity C-reactive protein predict the progression of chronic rheumatic mitral stenosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background High sensitive C-Reactive Protein (hs-CRP) predicts morbidity and mortality in various clinical conditions. The effect of hsCRP on progression of chronic rheumatic mitral stenosis (CRMS) has not been demonstrated. Methods and results A total of 132 patients with CRMS (95 female, 37 male) and 145 control (100 female, 45 male) were included in the study. Baseline clinical, echocardiographic, hematologic and hs-CRP measurements were collected prospectively. Mean mitral valve area (MVA) was 1.4 ± 0.3 cm2, mean wilkins valve score value was 8.9 ± 1.7, left atrial diameter was 5.0 ± 0.7 cm, left atrial area was 37.2 ± 12.6 cm2, and systolic pulmonary arterial pressure (SPAP) was 44 ± 11 mmHg in patients with CRMS. The mean levels of hs-CRP value, fibrinogen, and mean platelet volume (MPV) were significantly higher in CRMS group compared to control group. The levels of hsCRP were found to be positively correlated with mean Wilkins valve score value, SPAP, presence of atrial fibrillation (AF), left atrial diameter, left atrial area, presence of LASEC(+), fibrinogen, and MPV and inversely correlated with MVA in patients with CRMS. Linear regression analysis revealed that the hsCRP level independently affects mean Wilkins valve score value, left atrial area (LAA), LASEC(+) and AF in the patients with CRMS. Conclusions These results suggest that increased hsCRP levels are associated with CRMS severity. These association may be important when treating patients with CRMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goldstein I, Rebeyrotte P, Parlebas J et al (1968) Isolation from heart valves of glycopeptides which share Immunologic properties with streptococcus haemolyticus group A polysaccharides. Nature 219:866–868

    Article  PubMed  CAS  Google Scholar 

  2. Soler-Soler J, Galve E (2000) Worldwide perspective of valve disease. Heart 83:721–725

    Article  PubMed  CAS  Google Scholar 

  3. Ridker PM, Glynn RJ, Hennekens CH (1998) C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 97:2007–2011

    PubMed  CAS  Google Scholar 

  4. Yeun JY, Levine RA, Mantadilok V et al (2000) C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 35:469–476

    Article  PubMed  CAS  Google Scholar 

  5. Haverkate F, Thompson SG, Pyke SD et al (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. Europen concerted action in thrombolisis and disabilities angina pectoris study group. Lancet 349:462–466

    Article  PubMed  CAS  Google Scholar 

  6. Ridker PM, Cushman M, Stampfer MJ et al (1998) Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97:425–428

    PubMed  CAS  Google Scholar 

  7. Ridker PM, Buring JE, Shih J et al (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98:731–733

    PubMed  CAS  Google Scholar 

  8. Schoen FJ, St.John M (1991) Contemporary pathologic considerations in valvular disease. In: Virmani B, Atkinson JB, Feuoglio JJ (eds) Cardiovascular pathology. Saunders, Philadelphia, pp 334–353

    Google Scholar 

  9. Edep ME, Shirani J, Wolf P et al (2000) Matrix matalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol 9:281–286

    Article  PubMed  CAS  Google Scholar 

  10. Otto CM, Kuusisto J, Reichenback DD et al (1994) Characterization of the early lesion of valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90:844–853

    PubMed  CAS  Google Scholar 

  11. Danesh J, Whincup P, Walker M et al (2000) Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ 321:199–204

    Article  PubMed  CAS  Google Scholar 

  12. Chiu-Braga YY, Hayashi SY, Schafranski M et al (2006) Further evidence of inflammation in chronic rheumatic valve disease (CRVD): High levels of advanced oxidation protein products (AOPP) and high sensitive C-reactive protein. Int J Cardiol 109:275–276

    Article  PubMed  CAS  Google Scholar 

  13. Gölbasi Z, Ucar O, Keles T et al (2002) Increased levels of high sensitive C-reactive protein in patients with chronic rheumatic valve disease evidence of ongoing inflammation. Eur J Heart Fail 4:593–595

    Article  PubMed  Google Scholar 

  14. Krasuski RA, Bush A, Kay JE et al (2003) C-reactive protein elevation independently influences the procedural success of percutaneous balloon mitral valve commissurotomy. Am Heart J 146:1099–1104

    Article  PubMed  CAS  Google Scholar 

  15. Yetkin E, Erbay AR, Ileri M et al (2001) Levels of circulating adhesion molecules in rheumatic mitral stenosis. Am J Cardiol 88:1209–1211

    Article  PubMed  CAS  Google Scholar 

  16. Sahn DJ, DeMaria A, Kisslo J et al (1978) Recommendation regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurement. Circulation 58:1072–1083

    PubMed  CAS  Google Scholar 

  17. Wilkins GT, Weyman AE, Abascal VM et al (1988) Percutaneous balloon dilatationof the mitral valve. An analysisof echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 60:299–308

    Article  PubMed  CAS  Google Scholar 

  18. Hatle L, Angelsen B, Tromsdal A (1979) Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation 60:1096–1104

    PubMed  CAS  Google Scholar 

  19. Helmcke F, Nanda NC, Hsiung MC et al (1987) Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 75:175–183

    PubMed  CAS  Google Scholar 

  20. Guilherme L, Cunha-neto E, Coelho V et al (1995) Human heart-infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation 92:415–420

    Google Scholar 

  21. Stollerman GH (1991) Rheumatologic streptococci and autoimmunity. Clin Immunol Immunopathol 61:131–142

    Article  PubMed  CAS  Google Scholar 

  22. Lagrand WK, Visser CA, Hermens WT et al (1999) C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 100:96–102

    PubMed  CAS  Google Scholar 

  23. Venugopal SK, Devaraj S, Yuhanna I et al (2002) Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 106:1439–1441

    Article  PubMed  CAS  Google Scholar 

  24. Venugopal SK, Devaraj S, Jialal I (2003) C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 108:1676–1678

    Article  PubMed  CAS  Google Scholar 

  25. Gerber IL, Stewart RA, Hammett CJ et al (2003) Effect of aortic valve replacement on c-reactive protein in nonrheumatic aortic stenosis. Am J Cardiol 92:1129–1132

    Article  PubMed  CAS  Google Scholar 

  26. Buffon A, Liuzzo G, Biasucci LM et al (1999) Preprocedural serum levels of c-reactive protein predict early complications and late restenosis after coronary angioplasty. J Am Coll Cardiol 34:1512–1521

    Article  PubMed  CAS  Google Scholar 

  27. Boeken U, Feindt P, Zimmermann N et al (1998) Increased preoperative C-reactive protein values without signs of an infection and complicated course after cardiopulmonary bypass (CPB)-operations. Eur J Cardiothorac Surg 13:541–545

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez PL, Santos JL, Kaski JC et al (2006) Grupo AORTICA (Grupo de Estudio de la Estenosis Aortica): relation of circulating C-reactive protein to progression of aortic valve stenosis. Am J Cardiol 97:90–93

    Article  PubMed  CAS  Google Scholar 

  29. Olsson M, Dalsgaard CJ, Haegerstrand A et al (1994) Accumulation of T lymphocytes and expression of interleukin–2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol 23:1162–1170

    Article  PubMed  CAS  Google Scholar 

  30. Mohler ERI, Gannon F, Reynolds C et al (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    PubMed  Google Scholar 

  31. Warrier B, Mallipeddi R, Karla PK et al (2005) The functional role of C-reactive protein in aortic wall calcification. Cardiology 104:57–64

    Article  PubMed  CAS  Google Scholar 

  32. Lefer DJ (2002) Statins as potent anti-inflammatory drugs. Circulation 106:2041–2042

    Article  PubMed  Google Scholar 

  33. Rosenson RS, Tangney CC, Casey LC (1999) Inhibition of proinflammatory cytokine production by pravastatin. Lancet 353:983–984

    Article  PubMed  CAS  Google Scholar 

  34. Novaro GM, Tiong IY, Pearce GL et al (2001) Effect of hydroxymethylglutaryl coenzyme a reductase inhibitors on the progression of calcific aortic stenosis. Circulation 104:2205–2209

    Article  PubMed  CAS  Google Scholar 

  35. Rosenhek R, Rader F, Loho N et al (2004) Statins but not angiotensinconverting enzyme inhibitors delay progression of aortic stenosis. Circulation 110:1291–1295

    Article  PubMed  CAS  Google Scholar 

  36. Moura LM, Ramos SF, Zamorano JL et al (2007) Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J Am Coll Cardiol 49:554–561

    Article  PubMed  CAS  Google Scholar 

  37. Bruins P, Velthuis H, Yazdanbakhsh AP et al (1997) Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 96:3542–3548

    PubMed  CAS  Google Scholar 

  38. Fontes ML, Mathew JP, Rinder HM et al (2005) Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Atrial fibrillation after cardiac surgery/cardiopulmonary bypass is associated with monocyte activation. Anesth Analg 101:17–23

    Article  PubMed  Google Scholar 

  39. Hatzinikolaou-Kotsakou EH, Tziakas D, Hotidis A et al (2006) Relation of C-reactive protein to the first onset and the recurrence rate in lone atrial fibrillation. Am J Cardiol 97:659–661

    Article  PubMed  CAS  Google Scholar 

  40. Merino A, Hauptman P, Badimon L et al (1992) Echocardiographic “smoke” is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces. J Am Coll Cardiol 20:1661–1668

    PubMed  CAS  Google Scholar 

  41. Black IW, Hopkins AP, Lee LC et al (1991) Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. J Am Coll Cardiol 18:398–404

    PubMed  CAS  Google Scholar 

  42. Bernstein NE, Demopoulos LA, Tunick PA et al (1994) Correlates of spontaneous echo contrast in patients with mitral stenosis and normal sinus rhythm. Am Heart J 128:287–292

    Article  PubMed  CAS  Google Scholar 

  43. Goswami KC, Yadav R, Rao MB et al (2000) Clinical and echocardiographic predictors of left atrial clot and spontaneous echo contrast in patients with severe rheumatic mitral stenosis: a prospective study in 200 patients by transesophageal echocardiography. Int J Cardiol 73:273–279

    Article  PubMed  CAS  Google Scholar 

  44. Vincelj J, Sokol I, Jaksic O (2002) Prevalence and clinical significance of left atrial spontaneous echo contrast detected by transesophageal echocardiography. Echocardiography 19(4):319–324

    Article  PubMed  Google Scholar 

  45. Yuan YW, Shumg KK (1988) Ultrasonic backscatter from flowing whole blood:II. Dependence on frequency and fibrinogen concentrations. J Acoust Soc Am 84:1195–1200

    Article  PubMed  CAS  Google Scholar 

  46. Karthikeyan G, Thachil A, Sharma S et al (2007) Elevated high sensitivity CRP levels in patients with mitral stenosis and left atrial thrombus. Int J Cardiol 122:252–254

    Article  PubMed  Google Scholar 

  47. Ileri M, Buyukasik Y, Ileri NS et al (1998) Activation of blood coagulation in patients with mitral stenosis and sinus ritm. Am J Cardiol 81:795–797

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Alyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alyan, O., Metin, F., Kacmaz, F. et al. High levels of high sensitivity C-reactive protein predict the progression of chronic rheumatic mitral stenosis. J Thromb Thrombolysis 28, 63–69 (2009). https://doi.org/10.1007/s11239-008-0245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-008-0245-7

Keywords

Navigation