Skip to main content
Log in

Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Two-year-old embryogenic tissues (ET) of Picea omorika (Pančić) Purk. were successfully cryopreserved after preculture with sucrose, air-drying for 2 h, and freezing in liquid nitrogen (LN). The preculture protocol consisted of passaging the ET onto standard Litvay medium containing increasing concentrations of sucrose (0.25 M sucrose for 24 h, 0.5 M for 24 h, 0.75 M for 2 days, and 1.0 M for 3 days) for 7 days, at 25°C, and in the dark. The clumps were subsequently air-dried over silica gel, down to a 20% water content (based on fresh weight), placed in cryovials, and immersed in liquid nitrogen (LN) for 24 h. These were thawed at 42°C and progressively rehydrated in phytagel-solidified LM media containing decreasing concentrations of sucrose. After 3 weeks of in vitro culture, surviving clumps were friable and white in color, similar to their morphology prior to cryostorage. The frequency of bacterial and fungal contamination was higher if ET was frozen in LN-containing vials than in LN-free vials. This efficient cryopreservation protocol would be useful for the ex-situ conservation of P. omorika germplasm in gene banks at very low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams GW, Doiron MG, Park YS, Bonga JM, Charest PJ (1994) Commercialization potential of somatic embryogenesis in black spruce tree improvement. For Chron 70:593–598

    Google Scholar 

  • Ahuja S, Mandal BB, Dixit S, Srivastava PS (2002) Molecular, phenotypic and biosynthetic stability in Dioscorea floribunda plants derived from cryopreserved shoot tips. Plant Sci 163:971–977

    Article  CAS  Google Scholar 

  • Anandarajah K, McKersie BD (1990) Manipulating the desiccation tolerance and vigor of dry somatic embryos of Medicago sativa L. with sucrose, heat shock and abscisic acid. Plant Cell Rep 9:451–455

    Article  CAS  Google Scholar 

  • Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Ballian D, Longauer R, Mikić T, Paule L, Kajba D, Gömöry D (2006) Genetic structure of rare European conifer, Serbian spruce (Picea omorika (Panč.) Purk.). Plant Syst Evol 260:53–63

    Article  Google Scholar 

  • Bercetche J, Pâques M (1995) Somatic embryogenesis in maritime pine (Pinus pinaster). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3—gymnosperms. Kluwer, Dordrecht, pp 221–242

    Google Scholar 

  • Bomal C, Tremblay FM (2000) Dried cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–183

    Article  Google Scholar 

  • Budimir S, Vujičić R (1992) Benzyladenine induction of buds and somatic embryogenesis in Picea omorika (Panč.) Purk. Plant Cell Tissue Org 31:89–94

    Article  CAS  Google Scholar 

  • Bugala W (2000) Drzewa I krzewy iglaste. PWRiL, Warsaw

    Google Scholar 

  • Burschel P (1965) Die Omorikafichte. Forstarchiv 36:113–131

    Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tissue Org 98:165–178

    Article  CAS  Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun Inst For 14:57–63

    Google Scholar 

  • Chen HI, Tsai CD, Wang HT, Hwang SM (2006) Cryovial with partial membrane sealing can prevent liquid nitrogen penetration in submerged storage. Cryobiology 53:283–287

    Article  CAS  PubMed  Google Scholar 

  • Chmielarz P, Grenier-de March G, de Boucaud MT (2005) Cryopreservation of Quercus robur L. embryogenic calli. Cryoletters 26(6):349–355

    CAS  PubMed  Google Scholar 

  • Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. Cryoletters 25:33–42

    PubMed  Google Scholar 

  • Cyr DR (1999) Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, Dordrecht, pp 239–261

    Google Scholar 

  • Cyr DR (2000) Cryopreservation: roles on clonal propagation and germplasm conservation in conifers. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Centre for Agricultural Sciences/International Plant Genetic Resources Institute, Tsukuba/Rome, pp 261–268

    Google Scholar 

  • Cyr DR, Klimaszewska K (2002) Conifer somatic embryogenesis: II. Applications. Dendrobiology 48:41–49

    Google Scholar 

  • Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DI, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmannii complex) embryogenic cultures. Plant Cell Rep 13:574–577

    Article  Google Scholar 

  • De Verno LL, Park YS, Bonga JM, Barret JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench)Voss.)]. Plant Cell Rep 18:948–953

    Article  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y, Dereuddre J (1993) Importance of sucrose for the acquisition of tolerance to desiccation and cryopreservation of oil palm somatic embryos. Cryoletters 14:243–250

    Google Scholar 

  • Elliot B, Swennen R, Poumay Y, Frison E (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690–698

    Google Scholar 

  • Engelmann F (2004) Cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Fernandes P, Rodriquez E, Pinto G, Roldán-Ruiz I, De Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    CAS  PubMed  Google Scholar 

  • Find JI, Kristensen MMH, Nørgaard JV, Krogstrup P (1998) Effect of culture period and cell density on growth following cryopreservation of embryogenic suspension cultures of Norway Spruce and Sitka spruce. Plant Cell Tissue Org Cult 53:27–33

    Article  Google Scholar 

  • Ford CS, Jones NB, Van Staden J (2000) Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep 19:610–615

    Article  CAS  Google Scholar 

  • Fourre JL, Berger P, Niquet L, Andre P (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169

    Article  Google Scholar 

  • Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryoletters 29:135–144

    PubMed  Google Scholar 

  • Grenier-de March G, de Boucaud MT, Chmielarz P (2005) Cryopreservation of Prunus avium L. embryogenic tissues. Cryoletters 26:341–348

    CAS  PubMed  Google Scholar 

  • Grout BWW, Morris GJ (2009) Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 71:1079–1082

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Timmis R, Timmis KA, Carlson WC, Welty EDE (1995) Somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3—gymnosperms. Kluwer, Dordrecht, pp 303–313

    Google Scholar 

  • Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Org Cult 54:45–53

    Article  Google Scholar 

  • Hakman I, von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121:149–158

    CAS  Google Scholar 

  • Hazubska T, Szczygieł K (2003) Induction of somatic embryogenesis in spruce: Picea omorika, P. pungens “Glauca”, P. breweriana and P. abies. Dendrobiology 50:17–24

    Google Scholar 

  • Jorgensen J (1990) Conservation of valuable gene resources by cryopreservation in some forest tree species. J Plant Physiol 136:373–376

    Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL, Hawkman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea mariana). J Plant Physiol 132:529–539

    CAS  Google Scholar 

  • Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix × eurolepis) and black spruce (Picea mariana). J Exp Bot 43:73–79

    Article  CAS  Google Scholar 

  • Kolevska-Pletikapić B, Krsnik-Rasol M, Lorković Z, Besendorfer V, Tramišak T, Jelaska S (1995) Somatic embryogenesis in Picea omorika (Panč.) Purk. Acta Pharm 45:267–271

    Google Scholar 

  • Lardet L, Martin F, Dessailly F, Carron MP, Montoro P (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.). Plant Cell Rep 26:559–569

    Article  CAS  PubMed  Google Scholar 

  • Lelu-Walter AM, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776

    Article  CAS  PubMed  Google Scholar 

  • Litvay JD, Verma DC, Johson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  Google Scholar 

  • MacKay JJ, Becwar MR, Park YS, Corderro JP, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9

    Article  Google Scholar 

  • Malabadi RB, Nataraja K (2006) Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg. Trees. In Vitro Cell Dev Biol Plant 42:152–159

    Article  Google Scholar 

  • Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    Article  PubMed  Google Scholar 

  • McLellan MR, Schrijnemakers EWM, van Iren F (1990) The responses of four cultured plant cell lines to freezing and thawing in the presence or absence of cryoprotectant mixtures. Cryoletters 11:189–204

    Google Scholar 

  • Mihaljević S, Jelaska S (2005) Omorika spruce (Picea omorika). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer SBS, Dordrecht, pp 35–45

    Chapter  Google Scholar 

  • Mihaljević S, Perić M, Jelaska S (2001) The sensitivity of Picea omorika embryogenic culture to antibiotics. Plant Cell Tissue Org 67:287–293

    Article  Google Scholar 

  • Morris GJ (2005) The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology 50:231–238

    Article  CAS  PubMed  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Org 28:261–266

    Article  Google Scholar 

  • Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221

    Article  Google Scholar 

  • Nørgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genet 42:93–97

    Google Scholar 

  • Nunes EC, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003) In vitro conservation of Cedrela fissilis Vellozo (Meliaceae), a native tree of the Brazilian Atlantic Forest. Biodivers Conserv 12:837–848

    Article  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment consideration. Ann For Sci 59:651–656

    Article  Google Scholar 

  • Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Plant 34:231–239

    Article  Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Org 86:87–101

    Article  Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato (Ipomoea batatas Lam.) by vitrification. Plant Cell Rep 19:733–739

    Article  CAS  Google Scholar 

  • Percy RE, Livingstone NJ, Moran JA, von Aderkas P (2001) Desiccation, cryopreservation and water relations parameters of white spruce (Picea glauca) and interior spruce (Picea glauca × engelmanniii complex) somatic embryos. Tree Physiol 2:1303–1310

    Google Scholar 

  • Ryynänen L (1998) Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birch. Cryobiology 36:32–39

    Article  PubMed  Google Scholar 

  • Salajova T, Salaj J (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158:747–755

    Article  CAS  Google Scholar 

  • Senaratna T, MacKersie B, Bowley ST (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259

    Article  CAS  Google Scholar 

  • Suzuki M, Niino T, Akihama T (1994) Cryopreservation of shoot tips of kiwifruit seedlings by the alginate encapsulation-dehydration technique. Plant Tissue Cult Lett 11:122–128

    CAS  Google Scholar 

  • Suzuki M, Ishikawa M, Akihama T (1998) A novel preculture method for the induction of desiccation tolerance in gentian axillary buds for cryopreservation. Plant Sci 135:69–76

    Article  CAS  Google Scholar 

  • Suzuki M, Akihama T, Ishikawa M (2005) Cryopreservation of encapsulated gentian axillary buds following 2 step-preculture with sucrose and desiccation. Plant Cell Tissue Org 83:115–121

    Article  CAS  Google Scholar 

  • Suzuki M, Ishikawa M, Okuda H, Noda K, Kishimoto I, Nakamura T, Ogiwara I, Shimura I, Akihama T (2006) Physiological changes in Gentian axillary buds during two-step preculturing with sucrose that conferred a high level of tolerance to desiccation and cryopreservation. Ann Bot 97:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Szczygieł K (2003) Somatyczna embriogeneza świerka pospolitego (Picea abies Karst.), jodły pospolitej (Abies alba Mill.) oraz modrzewia europejskiego (Larix decidua Mill.). PhD thesis. Instytut Badawczy Leśnictwa, Warszawa

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Tsai CJ, Hubscher SL (2004) Cryopreservation in Populus functional genomics. New Phytol 164:73–81

    Article  CAS  Google Scholar 

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlet of Asparagus officinallis L. grown in vitro. Plant Cell Rep 9:328–331

    Article  Google Scholar 

  • Verleysen H, Samyn G, Van Bockstaele E, Debergh P (2004) Evaluation of analytical techniques to predict viability after cryopreservation. Plant Cell Tissue Org Cult 77:11–21

    Article  CAS  Google Scholar 

  • Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52:48–61

    Article  CAS  PubMed  Google Scholar 

  • von Arnold S (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J Plant Physiol 128:223–244

    Google Scholar 

  • Wang Q, Gafny R, Sahar N, Sela I, Mawassi M, Tanne E, Perl A (2002) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Sci 162:551–558

    Article  CAS  Google Scholar 

  • Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357

    Article  CAS  Google Scholar 

  • Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Huang XL, Chen QZ (2007) Induction and cryopreservation of embryogenic cultures from nucelli and immature cotyledon cuts of mango (Mangifera indica L. var. Zihua). Plant Cell Rep 26:161–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Hazubska-Przybył.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazubska-Przybył, T., Chmielarz, P., Michalak, M. et al. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss Organ Cult 102, 35–44 (2010). https://doi.org/10.1007/s11240-010-9701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9701-0

Keywords

Navigation