Skip to main content

Advertisement

Log in

RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant viruses continue to cause diseases on economically important crops. Therefore, numerous attempts to produce virus resistant plants have been reported by using the mechanisms such as host mediated protection and virus mediated protection. Here, a novel strategy of targeting viral RNA itself, rather than viral gene products, is presented to generate virus-resistant transgenic plants. A catalytic single chain variable antibody, 3D8 scFv, which has RNase activities, was functionally expressed in the cytosol of Nicotiana tabacum. We found that progenies of the transgenic tobacco plant acquired complete resistances against four ss-RNA tobamoviruses and one cucumovirus tested without viral accumulation and delayed onset of disease symptoms. The results showed that the resistance observed in 3D8 scFv transgenic plants was caused by the RNase activity of 3D8 scFv itself, not by RNA-mediated gene silencing mechanism. Taken together, we suggested that newly gained resistance of the 3D8 scFv transgenic plants to five ss-RNA viruses most likely resulted from the RNase activity of 3D8 scFv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Benvenuto E, Ordas RJ, Tavazza R, Ancora G, Biocca S, Cattaneo A, Galeffi P (1991) ‘Phytoantibodies’: a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol Biol 17:865–874

    Article  PubMed  CAS  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    Article  PubMed  CAS  Google Scholar 

  • Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22:856–862

    Article  PubMed  CAS  Google Scholar 

  • Bruening G, Agrawal HO (1967) Infectivity of a mixture of cowpea mosaic virus ribonucleoprotein components. Virology 32:306–320

    Article  PubMed  CAS  Google Scholar 

  • Carr JP, Beachy RN, Klessig DF (1989) Are the PR1 proteins of tobacco involved in genetically engineered resistance to TMV? Virology 169:470–473

    Article  PubMed  CAS  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  CAS  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    PubMed  Google Scholar 

  • Espert L, Degols G, Gongora C, Blondel D, Williams BR, Silverman RH, Mechti N (2003) ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J Biol Chem 278:16151–16158

    Article  PubMed  CAS  Google Scholar 

  • Fecker LF, Koenig R, Obermeier C (1997) Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch Virol 142:1857–1863

    Article  PubMed  CAS  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25:1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong G-W, Hwang I (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell Online 13:1511–1526

    CAS  Google Scholar 

  • Jun HR, Pham CD, Lim SI, Lee SC, Kim YS, Park S, Kwon MH (2010) An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus. Biochem Biophys Res Commun 395:484–489

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Montagu MV, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, Chung YC, Shim HK, Lee SC, Kwon MH, Kim YS (2006) Heavy and light chain variable domains of anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity. J Biol Chem 281:15287–15295

    Article  PubMed  CAS  Google Scholar 

  • Kwon MH, Lee MS, Kim KH, Park S, Shin HJ, Jang YJ, Kim HI (2002) Production and characterization of an anti-idiotypic single chain Fv that recognizes an anti-DNA antibody. Immunol Invest 31:205–218

    Article  PubMed  CAS  Google Scholar 

  • Letschert B, Adam G, Lesemann D, Willingmann P, Heinze C (2002) Detection and differentiation of serologically cross-reacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. J Virol Methods 106:1–10

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Liu S, Wang F, Wang Y, Liu K (2012) Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobacco. Plant Cell Tissue Organ Cult (PCTOC) 109:419–428

    Article  CAS  Google Scholar 

  • Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11:209–212

    Article  PubMed  CAS  Google Scholar 

  • McKenzie CL, Shatters RG Jr, Doostdar H, Lee SD, Inbar M, Mayer RT (2002) Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Arch Insect Biochem Physiol 49:203–214

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  CAS  Google Scholar 

  • Nie X (2006) Salicylic acid suppresses potato virus Y isolate N:O-induced symptoms in tobacco plants. Phytopathology 96:255–263. doi:10.1094/PHYTO-96-0255

    Article  PubMed  CAS  Google Scholar 

  • Nolke G, Cobanov P, Uhde-Holzem K, Reustle G, Fischer R, Schillberg S (2009) Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Mol Plant Pathol 10:41–49

    Article  PubMed  Google Scholar 

  • Pires AS, Rosa S, Castanheira S, Fevereiro P, Abranches R (2012) Expression of a recombinant human erythropoietin in suspension cell cultures of Arabidopsis, tobacco and Medicago. Plant Cell Tissue Organ Cult (PCTOC) 110:171–181

    Article  CAS  Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    Article  PubMed  CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Rochester DE, Kositratana W, Beachy RN (1990) Systemic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178:520–526

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2009) RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340

    Article  PubMed  CAS  Google Scholar 

  • Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100:4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Safarnejad MR, Fischer R, Commandeur U (2009) Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana. Arch Virol 154:457–467. doi:10.1007/s00705-009-0330-z

    Article  PubMed  CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Zhang MY, Fischer R (2001) Antibody-based resistance to plant pathogens. Transgenic Res 10:1–12

    Article  PubMed  CAS  Google Scholar 

  • Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    Article  PubMed  CAS  Google Scholar 

  • Sujatha M, Vijay S, Vasavi S, Reddy PV, Rao SC (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Cult (PCTOC) 110:275–287

    Article  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski LA, Powell PA, Nelson RS, Beachy RN (1990) Local and systemic spread of tobacco mosaic virus in transgenic tobacco. Plant Cell 2:559–567

    PubMed  CAS  Google Scholar 

  • Yang SJ, Carter SA, Cole AB, Cheng NH, Nelson RS (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci USA 101:6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Zein HS, da Silva JA, Miyatake K (2009) Monoclonal antibodies specific to Cucumber mosaic virus coat protein possess DNA-hydrolyzing activity. Mol Immunol 46:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Zhao MM, An DR, Zhao J, Huang GH, He ZH, Chen JY (2006) Transiently expressed short hairpin RNA targeting 126 kDa protein of tobacco mosaic virus interferes with virus infection. Acta Biochim Biophys Sin (Shanghai) 38:22–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Next Generation BioGreen21 program (No. PJ0079842012) from the Rural Development Administration (RDA) and the Korea Institute of Ocean Science and Technology project (No. PE99154) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukchan Lee.

Additional information

Gunsup Lee, Hye-Kyung Shim and Myung-Hee Kwon have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Shim, HK., Kwon, MH. et al. RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum . Plant Cell Tiss Organ Cult 115, 189–197 (2013). https://doi.org/10.1007/s11240-013-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0351-x

Keywords

Navigation