Skip to main content
Log in

Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Several reports on tissue culture-based techniques have been published for passion fruit (Passiflora edulis), an important tropical fruit crop. However, a system in which de novo shoot organogenesis (DNSO) or somatic embryogenesis (SE) can be induced from the same type of explant was not available so far. The present study describes an in vitro system that enables alternative induction of both morphogenetic pathways from P. edulis mature zygotic embryo. DNSO was observed when explants were cultured on Murashige and Skoog medium supplemented with high 6-benzyladenine (BA) to 2,4-dichloro-phenoxyacetic acid (2,4-D) ratios, such as 72.4 μM BA and 4.5 μM 2,4-D. Embryogenic calli were observed when low BA/2,4-D ratios, such as 4.5 μM BA and 72.4 μM 2,4-D were used. Morpho-anatomical characterization revealed that epidermal and sub-epidermal cells were involved with the regeneration process via both DNSO and SE pathways. These cells became meristematic and divided extensively to form protuberances after 12–15 days of culture in both systems. These protuberances led to the formation of either meristemoids or pro-embryogenic cell clusters, which differentiated into shoot buds or somatic embryos, respectively. The use of this system coupled with techniques that allow gene expression studies might greatly contribute to further studies on in vitro morphogenesis in Passiflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida M, Almeida CV, Graner EM, Brondani GE, Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1495–1515. doi:10.1007/s00299-012-1264-6

    Article  PubMed  Google Scholar 

  • Appezzato-da-Glória B, Vieira MLC, Dornelas MC (1999) Anatomical studies of in vitro organogenesis induced in leaf-derived explants of passionfruit. Pesq Agropec Bras 34:2007–2013. doi:10.1590/S0100-204X1999001100005

    Article  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarch A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. doi:10.1111/j.1365-313X.2008.03715.x

    Article  CAS  PubMed  Google Scholar 

  • Becerra DC, Forero AP, Góngora GA (2004) Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell Tiss Organ Cult 79:87–90. doi:10.1023/B:TICU.0000049440.10767.29

    Article  Google Scholar 

  • Bouamama B, Salem AB, Youssef FB, Chaieb S, Jaafoura MH, Mliki A, Ghorbel A (2011) Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” (Hordeum vulgare L.). In Vitro Cell Dev Biol Plant 47:321–327. doi:10.1007/s11627-011-9357-4

    Article  Google Scholar 

  • De Klerk GJ, Arnholdt-Schmitt B, Lieberei R, Neumann KH (1997) Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol Plant 39:53–66. doi:10.1023/A:1000304922507

    Article  Google Scholar 

  • Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Organ Cult 99:199–208. doi:10.1007/s11240-009-9594-y

    Article  CAS  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9. doi:10.1016/j.ydbio.2009.09.031

    Article  CAS  PubMed  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture studies on species of Passiflora. Plant Cell Tiss Organ Cult 36:211–217. doi:10.1007/BF00037722

    Article  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC, Appezzato-da-Glória B (1992) Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra. Ann Bot 70:477–482

    CAS  Google Scholar 

  • Dornelas MC, Fonseca TC, Rodriguez APM (2006) Brazilian passionflowers and novel passionate tropical flowering gems. In: Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol 4. Global Science Books, London, pp 629–639

    Google Scholar 

  • Drew RA (1997) Micropropagation of Passiflora species (passion fruit). In: Bajaj YPS (ed) Hightech and micropropagation. Springer, Dordrecht, pp 135–149

    Chapter  Google Scholar 

  • Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. doi:10.1016/j.tplants.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  • Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, vol 710. Humana Press, New York, pp 229–255. doi:10.1007/978-1-61737-988-8_17

    Chapter  Google Scholar 

  • Faria JLC, Segura J (1997) In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants of Passiflora edulis f. flavicarpa. In Vitro Cell Dev Biol Plant 33:209–212. doi:10.1007/s11627-997-0024-8

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Fernando JA, Vieira MLC, Machado SR, Appezzato-da-Gloria B (2007) New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell Tiss Organ Cult 91:37–44. doi:10.1007/s11240-007-9275-7

    Article  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548. doi:10.1242/dev.010298

    Article  CAS  PubMed  Google Scholar 

  • Jeannin G, Bronner R, Hahne G (1995) Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annum L.) cultivated in vitro: role of the sugar. Plant Cell Rep 15:200–204. doi:10.1007/BF00193720

    CAS  PubMed  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. J Plant Growth Reg 47:91–110. doi:10.1007/s10725-005-3478-x

    Article  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190. doi:10.1007/s12154-009-0028-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraut M, Wójcikowska B, Ledwoń A, Gaj MD (2011) Immature zygotic embryo cultures of Arabidopsis. A model system for molecular studies on morphogenic pathways induced in vitro. Acta Biol Cracov 53:59–67. doi:10.2478/v10182-011-0028-x

    Google Scholar 

  • Kurczynska EU, Potocka I, Dobrowolska I, Kulinska-Lukaszek K, Sala K, Wrobel J (2012) Cellular markers for somatic embryogenesis. In: Sato K-i (ed) Embryogenesis. InTech, Rijeka, pp 307–332

    Google Scholar 

  • Lombardi SP, Passos IRS, Nogueira MCS, Appezzato-da-Glória B (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast. Braz Arch Biol Technol 50:239–247. doi:10.1590/S1516-89132007000200009

    Article  Google Scholar 

  • Lü J, Chen R, Zhang M, Silva JAT, Ma G (2013) Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi. J Plant Physiol 170:1202–1211. doi:10.1016/j.jplph.2013.03.019

    Article  PubMed  Google Scholar 

  • Moura EF, Ventrella MC, Motoike SY, Sá Júnior AQ, Carvalho M, Manfio CE (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tiss Organ Cult 95:175–184. doi:10.1007/s11240-008-9430-9

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nhut DT, Khiet BLT, Thi NN, Thuy DTT, Duy N, Hai NT, Huyen PX (2007) High frequency shoot formation of yellow passion fruit (Passiflora edulis f. flavicarpa) via thin cell layer (TCL) Technology. In: Jain, S. M., Haggman, H. (Eds.) Protocols for Micropropagation of Woody Trees and Fruits. Springer, pp. 417–426

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, Melbourne

    Google Scholar 

  • Osborne DJ, McManus MT (2005) Hormones, signals and target cells in plant development. Cambridge University Press, New York

    Book  Google Scholar 

  • Otoni WC, Blackhall NW, d’Utra Vaz FB, Casali VW, Power JB, Davey MR (1995) Somatic hybridization of the Passiflora species, P. edulis f. flavicarpa Degener. and P. incarnata L. J Exp Bot 46:777–785. doi:10.1093/jxb/46.7.777

    Article  CAS  Google Scholar 

  • Otoni WC, Pinto DPL, Rocha DI, Vieira LM, Dias LLC, Silva ML, Silva CV, Lani ERG, Silva LC, Tanaka FAO (2013) Organogenesis and somatic embryogenesis in passionfruit (Passiflora spp.). In: Aslam J, Srivastava OS, Sharma MP (eds) Somatic embryogenesis and gene expression, 1st edn. Narosa Publishing House, New Delhi, pp 1–17

    Google Scholar 

  • Pacheco G, Garcia R, Lugatto D, Vianna M, Mansur E (2012) Plant regeneration, callus induction and establishment of cell suspension cultures of Passiflora alata Curtis. Sci Hortic 144:42–47. doi:10.1016/j.scienta.2012.06.022

    Article  CAS  Google Scholar 

  • Paim-Pinto DL, Almeida AMR, Rêgo MM, Silva ML, Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Organ Cult 107:521–530. doi:10.1007/s11240-011-0003-y

    Article  Google Scholar 

  • Parimalan R, Venugopalan A, Giridhar P, Ravishankar GA (2011) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana L. Plant Cell Tiss Organ Cult 105:317–328. doi:10.1007/s11240-010-9870-x

    Article  CAS  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26. doi:10.1016/j.pbi.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688. doi:10.1242/dev.030353

    Article  PubMed  Google Scholar 

  • Pinto AP, Monteiro-Hara ACBA, Stipp LCL, Mendes BMJ (2010) In vitro organogenesis of Passiflora alata. In vitro Cell Dev Biol Plant 46:28–33. doi:10.1007/s11627-009-9251-5

    Article  Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Organ Cult 116:1–15. doi:10.1007/s11240-013-0389-9

    Article  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54. doi:10.1105/tpc.105.037796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rocha DI, Dornelas MC (2013) Molecular overview on plant somatic embryogenesis. CAB Reviews 8:1–17. doi:10.1079/PAVSNNR20138022

    Article  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni WC (2012a) Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims). Plant Cell Tiss Organ Cult 111:69–78. doi:10.1007/s11240-012-0171-4

    Article  CAS  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FA, Silva LC, Otoni WC (2012b) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249:747–758. doi:10.1007/s00709-011-0318-x

    Article  PubMed  Google Scholar 

  • Rodriguez APM, Wetzstein HY (1998) A morphological and histological comparison of the initiation and development of pecan (Carya illionensis) somatic embryogenesis cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma 204:71–83. doi:10.1007/BF01282295

    Article  Google Scholar 

  • Rosa YBJ, Dornelas MC (2012) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tiss Org Cult 108:91–99. doi:10.1007/s11240-011-0016-6

    Article  CAS  Google Scholar 

  • Rosa YBJ, Aizza LCB, Armanhi JSL, Dornelas (2013a) A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell Tiss Organ Cult 115:233–242. doi:10.1007/s11240-013-0355-6

    Article  CAS  Google Scholar 

  • Rosa YBJ, Aizza LCB, Bello CCM, Dornelas (2013b) The PmNAC1 gene is induced by auxin and expressed in differentiating vascular cells in callus cultures of Passiflora. Plant Cell Tiss Organ Cult 115:275–283. doi:10.1007/s11240-013-0360-9

    Article  Google Scholar 

  • Savona M, Mattioli R, Nigro S, Falasca G, Della Rovere F, Costantino P, De Vries S, Ruffoni B, Trovato M, Altamura MM (2012) Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J Exp Bot 63:471–488. doi:10.1093/jxb/err295

    Article  CAS  PubMed  Google Scholar 

  • Silva CV, Oliveira LS, Loriato VAP, Silva LC, Campos JMS, Viccini LF, Oliveira EJ, Otoni WC (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata Masters. Plant Cell Tiss Organ Cult 107:407–416. doi:10.1007/s11240-011-9991-x

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54:118–130

    Google Scholar 

  • Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887. doi:10.1007/s11103-005-4547-2

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625. doi:10.1093/mp/ssr007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471. doi:10.1016/j.devcel.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meleti LMM, Rezende JAM (2006) Resistance to passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030. doi:10.1094/PD-90-1026

    Article  CAS  Google Scholar 

  • Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-014-0482-8

    Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. doi:10.1016/j.tplants.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhao X, Zhuang G, Wang S, Chen F (2008) Simple hormonal regulation of somatic embryogenesis and/or shoot organogenesis in caryopsis cultures of Pogonatherum paniceum (Poaceae). Plant Cell Tiss Organ Cult 95:57–67. doi:10.1007/s11240-008-9414-9

    Article  CAS  Google Scholar 

  • Wang X, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ (2011) Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot 107:599–609. doi:10.1093/aob/mcq269

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57. doi:10.1080/07352680903436291

    Article  CAS  Google Scholar 

  • You CR, Fan TJ, Gong XQ, Bian FH, Liang LK, Qu FN (2011) A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tiss Organ Cult 105:317–328. doi:10.1007/s11240-011-9974-y

    Article  Google Scholar 

  • Zerbini FM, Otoni WC, Vieira MLC (2008) Passionfruit. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants, vol 5. Tropical and subtropical fruit and nuts, 1st edn. Wiley, Berlin, pp 213–223

  • Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tiss Organ Cult 103:325–332. doi:10.1007/s11240-010-9783-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Prof EW Kitajima and Prof F Tanaka for the use of the electron microscope facility at NAP/MEPA-ESALQ/USP; Viveiros Flora Brasil Ltda. (Araguari, MG) for kindly providing P. edulis seeds; To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil, Grant 2010/52336-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Carnier Dornelas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, D.I., Monte-Bello, C.C. & Dornelas, M.C. Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tiss Organ Cult 120, 1087–1098 (2015). https://doi.org/10.1007/s11240-014-0663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0663-5

Keywords

Navigation