Skip to main content
Log in

Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Finger millet (Eleusine coracana (L.) Gaertn.), an economically important food crop is cultivated widely in the arid and semi-arid tropics of Africa and Asia. In the present study, an efficient micropropagation protocol has been established for finger millet genotypes CO 9, CO (Ra) 14 and GPU 28 using shoot apical meristems (SAMs). Shoot proliferation medium (SPM) containing Murashige and Skoog’s (MS) medium amended with 3.0 mg/l 6-benzylaminopurine produced the highest shoot regeneration frequency (86.60%) with an average of 26.45 ± 0.34 shoots per explant and 6.26 ± 0.38 cm shoot length in CO 9. An increase in the number of shoots per explant was observed when SAMs were repeatedly sub-cultured in SPM at 2 weeks interval for 8 weeks. Rooting of the regenerated shoots was achieved in full-strength MS medium containing indole-3-acetic acid (IAA) or indole-3-butyric acid. Rooting medium containing 0.25 mg/l IAA exhibited highest rooting frequency (100%) with an average root length of 4.44 ± 0.15 cm. In vitro rooted shoots transferred to the field conditions resulted in 100% survivability.Genetic fidelity of 3-month old mother plant and micropropagated plantlets was confirmed using 3′-anchored dinucleotide inter simple sequence repeats. A total of 115 amplicons generated for CO 9, CO (Ra) 14 and GPU 28 were monomorphic, revealing no variation among mother plant and micropropagated plantlets. Thus, SAMs could serve as a suitable explant for the mass multiplication of true-to-type plants and genetic transformation in finger millet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal D, Kumar A, Reddy MS (2010) Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell Tiss Organ Cult 102:45–52. doi:10.1007/s11240-010-9703-y

    Article  Google Scholar 

  • Ahmad A, Zhong H, Wang W, Sticklen MB (2002) Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 38:163–167. doi:10.1079/IVP2001267

    Article  Google Scholar 

  • Arockiasamy S, Ignacimuthu S (2007) Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26:1745–1753. doi:10.1007/s00299-007-0377-9

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435. doi:10.1007/sii627-008-9153-y

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788.doi:10.1007/s10529-009-993-4

    Article  CAS  PubMed  Google Scholar 

  • Cho MJ, Choi HW, Okamoto D, Zhang S, Lemaux PG (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep 21:467–474. doi:10.1007/s00299-002-0542-0

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Zhong H, Sticklen MB (2000) In vitro morphogenesis of pearl millet [Pennisetum glaucum. (L.) R.Br.]: efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep 19:546–550. doi:10.1007/s002990050771

    Article  CAS  Google Scholar 

  • Dey M, Bakshi S, Galiba G, Sahoo L, Panda SK (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech 2:233–240. doi:10.1007/s13205-012-0051-y

    Article  PubMed Central  Google Scholar 

  • Dosad S, Chawla HS (2015) In vitro plant regeneration from mature seeds of finger millet (Eleusine coracana) through somatic embryogenesis. Ind J Plant Physiol 20:360–367. doi:10.1007/s40502-015-0191-2

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dvořáková Z, Čepková PH, Janovská D, Viehmannováa I, Svobodová E, Cusimamani EF, Milella L (2015) Comparative analysis of genetic diversity of 8 millet genera revealed by ISSR markers. Emir J Food Agric 27:617–628. doi:10.9755/ejfa.2015.04.077

    Article  Google Scholar 

  • George L, Eapen S (1990) High frequency plant-regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn). Euphytica 48:269–274. doi:10.1007/BF00023660

    Article  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009. doi:10.1007/s00299-006-0141-6

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Roy JK (2002) Molecular markers in crop improvement: present status and future needs in India. Plant Cell Tiss Organ Cult 70:229–234. doi:10.1023/A:1016597404454

    Article  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotech 18:275–282. doi:10.5511/plantbiotechnology.18.275

    Article  CAS  Google Scholar 

  • Gupta R, Verma K, Joshi DC, Yadav D, Singh M (2010) Assessment of genetic relatedness among three varieties of finger millet with variable seed coat colour using RAPD and ISSR markers. Genet Eng Biotechnol J 2010:1–9

    Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Kumar MS, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS ONE. doi:10.1371/journal.pone.0099110

    PubMed  PubMed Central  Google Scholar 

  • Jha P, Yadav CB, Anjaiah V, Bhat V (2009). In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br. In Vitro Cell.Dev.Biol. Plant 45:145–154 doi:10.1007/s11627-009-9198-6

    Article  Google Scholar 

  • Jha P, Rustagi A, Agnihotri PK, Kulkarni VM, Bhat V (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tiss Organ Cult 107:501–512. doi:10.1007/s11240-011-0001-0

    Article  CAS  Google Scholar 

  • Kothari SL, Kumar S, Vishnoi RK, Kothari A, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88. doi:10.5511/plantbiotechnology.22.81

    Article  CAS  Google Scholar 

  • Kumar S, Agarwal K, Kothari SL (2001) In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn. Curr Sci 81:1482–1485

    CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Wang L, Elliott A, Grof CPL, Berding N, Smith GR (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep 25:1007–1015. doi:10.1007/s00299-006-0154-1

    Article  CAS  PubMed  Google Scholar 

  • Latha AM, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn). Plant Sci 169:657–667. doi:10.1016/j.plantsci.2005.05.009

    Article  CAS  Google Scholar 

  • Magonja MA, Lenne JM, Manyasa E, Sreenivasaprasad S (2007) Finger millet blast management in East Africa. Creating opportunities for improving production and utilization of finger millet. In: Proceedings of the First International Finger Millet Stakeholder Workshop, Projects R8030 & R8445 UK Department for International Development-Crop Protection Programme. International Crops Research Institute for the Semi-Arid Tropics. ISBN: 978-92-9066–505–2

  • Mohanty BD, Gupta SD, Ghosh PD (1985) Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn.). Plant Cell Tiss Organ Cult 5:147–150. doi:10.1007/BF00040311

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • National Research Council (1996). Finger Millet. In: Lost crops of Africa: Volume I: Grains. The National Academic Press, Washington, DC, pp 39–58. doi:10.17226/2305

    Google Scholar 

  • Nethra N, Gowda R, Gowda PHR. (2009). Influence of culture medium on callus proliferation and morphogenesis in finger millet. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa. In Proceedings of an International Conference, September 19–21, 2007. Bern, Switzerland. Univ. Bern. pp. 167–178

  • Nhut DT, Le BV, Van KTT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565. doi:10.1016/S0176-1617(00)80112-1

    Article  CAS  Google Scholar 

  • Pande A, Dosad S, Chawla HS, Arora S (2015) In vitro organogenesis and plant regeneration from seed-derived callus cultures of finger millet (Eleusine coracana). Braz J Bot 38:19–23. doi:10.1007/s40415-014-0102-1

    Article  Google Scholar 

  • Pius J, Eapen S, George L, Rao PS, Raut RS (1999) Performance of plants regenerated through somatic embryogenesis in finger millet (Eleusine coracana Gaertn.). Trop Agric Res Ext 2:87–90

    Google Scholar 

  • Plaza-Wuthrich S, Tadele Z (2012) Millet improvement through regeneration and transformation. Biotechnol Mol Biol Rev 7:48–61. doi:10.5897/BMBR12.001

    Google Scholar 

  • Rai MK, Phulwaria M, Gupta AK, Shekhawat NS, Jaiswal U (2012) Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tiss Organ Cult 111:259–264. doi:10.1007/s11240-012-0190-1

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Daniel MA, Ignacimuthu S (2013) Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.). In Vitro Cell Dev Biol Plant 49:285–293. doi 10.1007/s11627-013-9510-3

    Article  Google Scholar 

  • Rangan TS (1976) Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleusine coracana Gaertn. and Pennisetum typhoideum Pers. Zeitschrift für Pflanzenphysiologie 78:208–216

    Article  CAS  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–1. doi:10.1023/A:1020691618797

    Article  Google Scholar 

  • Sadia B, Josekutty PC, Potlakayala SD, Pate P, Goldman S, Rudrabhatla SV (2010) An efficient protocol for culturing meristems of sorghum hybrids. Int J Exp Bot 79:1–5

    Google Scholar 

  • Sastri BN (1989) The wealth of india: a dictionary of indian raw materials and industrial products, vol. III (D-E). Publication and Information Directorate, CSIR, New Delhi, pp 160–166

    Google Scholar 

  • Satish L, Ceasar SA, Shilpha J, Rency AS, Rathinapriya P, Ramesh M (2015) Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn. In Vitro Cell Dev Biol Plant 51:192–200. doi:10.1007/s11627-015-9672-2

    Article  Google Scholar 

  • Shan XY, Li DS, Qu RD (2000) Thidiazuron promotes in vitro regeneration of wheat and barley. In Vitro Cell Dev Biol Plant 36:207–210. doi:10.1007/s11627-000-0038-y

    Article  CAS  Google Scholar 

  • Srivastav S, Kothari SL (2002) Embryogenic callus induction and high frequency plant regeneration in pearl millet. Cer Res Commun 30:69–74

    Google Scholar 

  • Sticklen MB, Oraby HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200. doi:10.1079/IVP2004616

    Article  CAS  Google Scholar 

  • Vinoth A, Ravindhran R (2015) Efficient plant regeneration of watermelon (Citrullus lanatus Thunb.) via somatic embryogenesis and assessment of genetic fidelity using ISSR markers. In Vitro Cell Dev Biol Plant 52:107–115. doi:10.1007/s11627-015-9731-8

    Article  Google Scholar 

  • Wakizuka T, Yamaguchi T (1987) The induction of enlarged apical domes in vitro and multi-shoot formation from finger millet (Eleusine coracana). Ann Bot 60:331–336. doi:10.1093/oxfordjournals.aob.a087452

    Article  Google Scholar 

  • Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica). J Plant Res 120:237–245. doi:10.1007/s10265-006-0046-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhang H, Zhang MB (1996) Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J Plant Physiol 148:667–671. doi:10.1016/S0176-1617(96)80365-8

    Article  CAS  Google Scholar 

  • Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966. doi:10.1007/s002990050691

    Article  CAS  Google Scholar 

  • Zhang K, Wang J, Hu X, Yang A, Zhang J (2010) Agrobacterium mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell Tissue Organ Cult 102:135–143. doi:10.1007/s11240-010-9713-9

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992) In vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:483–489. doi:10.1007/BF00199966

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, Wang W, Sticklen MB (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726. doi:10.1016/S0176-1617(98)80226-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is published under the major research project funded by Loyola College – Times of India, Chennai, India (Project approval code: 4LCTOI14PBB001) and UGC Research Award Scheme (F.30-1/2014/RA-2014-16-GE-TAM5825 SA-II). We thank Dr.R.Viswanathan, Professor Tamil Nadu Agricultural University, Thriuchirappalli, India for providing seeds of finger millet used in our study. The authors are thankful to the management of Loyola College, Chennai, for providing the laboratory and infrastructure facilities.

Author information

Authors and Affiliations

Authors

Contributions

GAB performed the experiments and involved in manuscript preparation. AV was involved in experimental design, data analysis and manuscript preparation. RR supervised the work and reviewed the manuscript.

Corresponding author

Correspondence to R. Ravindhran.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Babu Subramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atul Babu, G., Vinoth, A. & Ravindhran, R. Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers. Plant Cell Tiss Organ Cult 132, 157–164 (2018). https://doi.org/10.1007/s11240-017-1319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1319-z

Keywords

Navigation