Skip to main content
Log in

Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effects of iron nanoparticles and salicylic acid (SA) on strawberry (Fragaria × ananassa Duch.) plants in conditions of drought stress were surveyed under in vitro conditions to find the optimum combination for strawberry tissue culture. Cuttings of the Queen Elisa cultivar were surveyed in a three-way factorial experiment with three replications in 2015. The results showed that drought stress significantly affected all measured parameters of strawberry plantlets under in vitro condition in a negative way. SA compensated for the negative effects of drought stress on strawberry plantlets and improved their growth parameters under in vitro culture. Strawberry plantlets treated with iron nanoparticles were able to cope with stressful conditions better than untreated ones. This study found that iron, a micronutrient in plant growth and in vitro development, greatly influenced the plantlets’ growth parameters and other measured traits. These results indicate that the efficiency of tissue culture and in vitro culture of strawberries could be improved by increased application of iron in the form of nanoparticles. The results might also indicate that the application of iron nanoparticles along with SA can be a useful method for providing higher quantity and quantity in the in vitro culture of strawberries, and could be used for adapting strawberry plants to drought before transplanting them in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abountiolas M (2016) In vitro and in vivo antioxidant capacity of synthetic and natural polyphenolic compounds identified from strawberry and fruit juices. Dissertation, University of South Florida. http://scholarcommons.usf.edu/etd/6057 Accessed 9 Mar 2016

  • Ahmad R, Tripathi AK, Tripathi P, Singh S, Singh R, Singh RK (2008) Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia. In Vivo 22(4):525–528

    PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bhat S (2014) Studies on in vitro induced mutations in strawberry (Fragaria X ananassa Duch.). Dissertation, CCSHAU. KrishiKosh. Chaudhary Charan Singh Haryana Agricultural University. http://krishikosh.egranth.ac.in/bitstream/1/77012/1/CCSHAU-293729-Bhat%2C%20Sandhya.pdf

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. J Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Chen Z, Chen M, Jiang M (2016) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192

    Article  PubMed  Google Scholar 

  • Christianson ML, Duffy SH (2002) Dose-dependent effect of salicylates in a moss, Funaria hygrometrica. J Plant Growth Regul 21(3):200–208

    Article  CAS  Google Scholar 

  • de Ribou SB, Douama F, Hamanta O, Frohlich MW, Negrutiua I (2013) Plant science and agricultural productivity: why are we hitting the yield ceiling? Plant Sci 210:159–176

    Article  Google Scholar 

  • Diengngan S, Mahadevamma M, Murthy B (2016) Efficacy of in vitro propagation and crown sizes on the performance of strawberry (Fragaria × ananassa Duch) cv. festival under field condition. J Agric Sci Technol 18(1):255–264

    Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113(2):120–128. https://doi.org/10.1016/j.scienta.2007.03.012

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41(2):281–284. https://doi.org/10.1023/B:PHOT.0000011962.05991.6c

    Article  CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) [12] Assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1

    Article  PubMed  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008b) The components of plant tissue culture media I: macro-and micro-nutrients. In Plant propagation by tissue culture. 3rd edn. Springer, Dordrecht, pp 65–113

    Google Scholar 

  • Ghaderi N, Normohammadi S, Javadi T (2015) Morpho-physiological responses of strawberry (Fragaria × ananassa) to exogenous salicylic acid application under drought stress. J Agric Sci Technol 17(1):167–178

    Google Scholar 

  • Ghasemi R, Zarei M, Torki M (2010) Adding medicinal herbs including garlic (Allium sativum) and thyme (Thymus vulgaris) to diet of laying hens and evaluating productive performance and egg quality characteristics. Am J Anim Vet Sci 5(2):151–154

    Article  Google Scholar 

  • Gupta R, Wall T, Baxter L (2007) Impact of mineral impurities in solid fuel combustion. Springer, New York

    Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 53(4):433–437. https://doi.org/10.1556/AAgr.53.2005.4.9

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3(4):297–304

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005

    Article  CAS  Google Scholar 

  • He Y, Liu Y, Cao W, Huai M, Xu B, Huang B (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45(3):988–995. https://doi.org/10.2135/cropsci2003.0678

    Article  CAS  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin S-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420. https://doi.org/10.3389/fpls.2015.00420

    PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Burritt DJ, Fujita M (2016) Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. In Abiotic stress response in plantsm, Wiley, Weinheim, pp 323–375

    Google Scholar 

  • Hussein M, Balbaa L, Gaballah M (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3(4):321–328

    CAS  Google Scholar 

  • Jamali B, Eshghi S, Tafazoli E (2011) Vegetative and reproductive growth of strawberry plants cv.‘Pajaro’affected by salicylic acid and nickel. J Agric Sci Technol 13:895–904

    Google Scholar 

  • Karimi S, Yadollahi A, Nazari-Moghadam R, Imani A, Arzani K (2012) In vitro screening of almond (Prunus dulcis (Mill.)) genotypes for drought tolerance. J Biol Environ Sci 6(18):263–270

    Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160(5):485–492. https://doi.org/10.1078/0176-1617-00865

    Article  CAS  PubMed  Google Scholar 

  • Khodary S (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6(1):5–8

    CAS  Google Scholar 

  • Knörzer OC, Lederer B, Durner J, Böger P (1999) Antioxidative defense activation in soybean cells. Physiol Plant 107(3):294–302. https://doi.org/10.1034/j.1399-3054.1999.100306.x

    Article  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0403s01

    Google Scholar 

  • Lindsay W, Schwab A (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5(4–7):821–840. https://doi.org/10.1080/01904168209363012

    Article  CAS  Google Scholar 

  • Maciel R, Sant’Anna G, Dezotti M (2004) Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere 57(7):711–719. https://doi.org/10.1016/j.chemosphere.2004.07.032

    Article  CAS  PubMed  Google Scholar 

  • Malik B, Pirzadah TB, Tahir I, Rehman RU, Hakeem KR, Abdin M (2014) Plant signaling: response to reactive oxygen species. In Plant signaling: understanding the molecular crosstalk. Springer, New Delhi, pp 1–38

    Google Scholar 

  • Mortvedt JJ (1991) Micronutrient fertilizer technology. In Micronutrients in agriculture, 2rd edn. SSSA Book Series, Madison, WI, pp 523–548

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naik P, Al-Khayri J (2016) Impact of abiotic elicitors on in vitro production of plant secondary metabolites: a review. J Adv Res Biotech 1(2):7

    Google Scholar 

  • Natsheh B, Abu-Khalaf N, Mousa S (2015) Strawberry (Fragaria ananassa Duch.) plant productivity quality in relation to soil depth and water requirements. Int J Plant Res 5(1):1–6. https://doi.org/10.5923/j.plant.20150501.01

    Google Scholar 

  • Nimir NE, Guisheng Z, Guo W-S, Ma B, Shiyuan L, Yonghui W (2016) Effect of foliar application of ga3, kinetin, and salicylic acid on ions content, membrane permeability and photosynthesis under salt stress of sweet sorghum. Can J Plant Sci. https://doi.org/10.1139/CJPS-2016-0110

    Google Scholar 

  • Palei S, Das AK, Rout GR (2015) In vitro studies of strawberry-an important fruit crop: a review. J Plant Sci Res 31(2):115–131

    Google Scholar 

  • Parvin S, Javadi T, Ghaderi N (2015) Proline, protein, rwc and msi contents affected by paclobutrazol and water deficit treatments in strawberry cv. Paros Cercetări Agronomice în Moldova 1(161):107–114. https://doi.org/10.1515/cerce-2015-0022

    Google Scholar 

  • Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46(2):211–226. https://doi.org/10.1016/0022-1759(81)90138-1

    Article  CAS  PubMed  Google Scholar 

  • Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. In Water stress and crop plants: a sustainable approach. Vol. 2, Wiley, Chichester, pp 24–40

    Chapter  Google Scholar 

  • Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saed-Moucheshi A, Pakniyat H, Pirasteh-Anosheh H, Azooz M (2014a) Role of ROS as signaling molecules in plants. In Ahmad P. (ed) Reactive oxygen species, antioxidant network and signaling in plants. Springer, New York, pp 585–626

    Google Scholar 

  • Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014b) Reactive oxygen species (ROS) generation and detoxifying in plants. J Plant Nutr 37(10):1573–1585. https://doi.org/10.1080/01904167.2013.868483

    Article  CAS  Google Scholar 

  • Saed-Moucheshi A, Hasheminasab H, Khaledian Z, Pessarakli M (2015) Exploring morpho-physiological relationships among drought resistance related traits in wheat genotypes using multivariate techniques. J Plant Nutr 38(13):2077–2095. https://doi.org/10.1080/01904167.2015.1009099

    Article  CAS  Google Scholar 

  • Said-Al Ahl H, Mahmoud AA (2010) Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J Appl Sci 3(1):97–111

    Google Scholar 

  • Sairam R (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 4(2):173–181. https://doi.org/10.1007/BF00025220

    Article  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164(2):151–162. https://doi.org/10.1007/BF00396077

    Article  CAS  PubMed  Google Scholar 

  • Shakirova F (2007) Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid Salicylic acid a plant hormone. In Hayat S & Ahmad A (eds) Salicyclic acid—a plant hormaone. Springer, Dordrecht, pp 69–89

    Chapter  Google Scholar 

  • Shakirova F, Allagulova CR, Maslennikova D, Klyuchnikova E, Avalbaev A, Bezrukova M (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28. https://doi.org/10.1016/j.envexpbot.2015.08.002

    Article  CAS  Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci 93(10):5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowik I, Borkowska B, Markiewicz M (2016) The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry (Fragaria x ananassa Duch.) genotypes. Appl Soil Ecol 101:152–164. https://doi.org/10.1016/j.apsoil.2016.01.021

    Article  Google Scholar 

  • Sun C, Wang D, Hu Y, Li X, Zhang W, Sun J, Gao X (2013) Effects of salicylic acid on physiological characteristics of strawberry leaves under drought stress. Eur J Hortic Sci 78(3):106–111

    CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates, Incorporated, Sinauer Associates Incorporated, Sunderland

    Google Scholar 

  • Tang X, Zhao C, Wen G, Wang W, Wang C, Sun Y, Bai X (2014) Physiological mechanism for anthocyanins to strengthen the drought tolerance of plants. Agric Sci Technol 15(11):1935–1941

    CAS  Google Scholar 

  • Tarafdar J, Rathore I, Thomas E (2015) Enhancing nutrient use efficiency through nano technological interventions. Indian J Fertil 11(12):46–51

    Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84. https://doi.org/10.3389/fpls.2015.00084

    Article  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301. https://doi.org/10.1126/science.1133649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waheed A-M, Madi A (2016) Influence of salicylic acid (SA) and ascorbic acid (ASA) on’in vitro’propagation and salt tolerance of date palm (‘Phoenix dactylifera’ L.) cv.’Nersy’. Aust J Crop Sci 10(7):969–976

    Article  Google Scholar 

  • Ying Y, Yue Y, Huang X, Wang H, Mei L, Yu W, Zheng B, Wu J (2013) Salicylic acid induces physiological and biochemical changes in three Red bayberry (Myric rubra) genotypes under water stress. Plant Growth Regul 71(2):181–189. https://doi.org/10.1007/s10725-013-9818-3

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by University of Kurdistan (Grant Number 4.14363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali akbar Mozafari.

Additional information

Communicated by Henryk Flachowsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, A., Havas, F. & Ghaderi, N. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tiss Organ Cult 132, 511–523 (2018). https://doi.org/10.1007/s11240-017-1347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1347-8

Keywords

Navigation