Skip to main content
Log in

Forced convection of gaseous slip-flow in porous micro-channels under Local Thermal Non-Equilibrium conditions

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Steady laminar forced convection gaseous slip-flow through parallel-plates micro-channel filled with porous medium under Local Thermal Non-Equilibrium (LTNE) condition is studied numerically. We consider incompressible Newtonian gas flow, which is hydrodynamically fully developed while thermally is developing. The Darcy–Brinkman–Forchheimer model embedded in the Navier–Stokes equations is used to model the flow within the porous domain. The present study reports the effect of several operating parameters on velocity slip and temperature jump at the wall. Mainly, the current study demonstrates the effects of: Knudsen number (Kn), Darcy number (Da), Forchheimer number (Γ), Peclet number (Pe), Biot number (Bi), and effective thermal conductivity ratio (K R) on velocity slip and temperature jump at the wall. Results are given in terms of skin friction (C f Re *) and Nusselt number (Nu). It is found that the skin friction: (1) increases as Darcy number increases; (2) decreases as Forchheimer number or Knudsen number increases. Heat transfer is found to (1) decreases as the Knudsen number, Forchheimer number, or K R increases; (2) increases as the Peclet number, Darcy number, or Biot number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bi:

Biot number \(({h_{\rm sf} L^2}\mathord{\left/ {\vphantom {{h_{\rm sf} L^2} {\varepsilon k_{\rm f}}}} \right. \kern-\nulldelimiterspace} {\varepsilon k_{\rm f}})\)

c f :

Coefficient in the Forchheimer term

Cf :

Skin friction coefficient

C p :

Constant pressure specific heat

C v :

Constant volume specific heat

D :

Pore diameter

Da :

Darcy number \((K/\varepsilon L^2)\)

h :

Local heat transfer coefficient

h sf :

Interstitial heat transfer coefficient

k :

Thermal conductivity

K :

Intrinsic permeability of the porous medium

Kn :

Modified Knudsen number \(\left(\frac{\lambda}{D}\,\frac{D}{L}\right)\)

K R :

Effective thermal conductivity ratio \((\varepsilon {k_{\rm f}} \mathord{\left/ {\vphantom {{k_{\rm f}}{(1-\varepsilon)k_{\rm s}}}}\right. \kern-\nulldelimiterspace} {(1-\varepsilon)k_{\rm s}})\)

L :

Half channel width

Nu :

Nusselt number \((hL/\varepsilon k_{\rm f})\)

p :

Pressure

Pe :

Peclet number \(({u_{\rm o} L} \mathord{\left/ {\vphantom {{u_o L} {\varepsilon \alpha}}} \right. \kern-\nulldelimiterspace} {\varepsilon \alpha)}\)

Pr :

Prandtl number (μ /α ρf)

q w :

Heat transfer rate from the plate wall

Re * :

Modified Reynolds number in porous media \((\rho_{\rm f} u_o L/\mu \varepsilon)\)

t :

Time

t 0 :

Reference time(ρ L 2/μ)

T :

Temperature

u :

Axial velocity

u 0 :

Reference axial velocity \((\varepsilon L^2/\mu (-{\rm d}p/{\rm d}x))\)

U :

Non-dimensional axial velocity (u/u o)

x :

Axial coordinate

X :

Dimensionless axial coordinate (x/L)

y :

Transverse coordinate

Y :

Dimensionless transverse coordinate (y/L)

Greek symbols :

 

α:

Thermal diffusivity

γ:

Specific heat ratio (C p /C ν)

Γ:

Dimensionless coefficient of Forchheimer \((\rho_{\rm f} c_{\rm f} \varepsilon^2(-{\rm d}p/{\rm d}x)L^4/\mu^2\sqrt k)\)

λ:

Mean free path of the gas molecules

\(\varepsilon \) :

Porosity of the porous medium

μ:

Dynamic viscosity

ρf :

Fluid density

σT :

Thermal accommodation coefficient

σv :

Tangential momentum accommodation coefficient

θ:

Non-dimensional temperature (T − T /T w  − T )

τ:

Non-dimensional time (t/t o)

τw :

Shear stress at the wall \((-\mu (\partial u/\partial y)\left.)\right|_{\rm w} \)

Subscripts :

 

f :

Fluid

mf :

Mean value for the fluid

s :

Solid

w :

Wall

References

  • Ameel T.A., Barron R.F., Wang X.M., Warrington R.O. (1997). Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophys. Eng. 1, 303–320

    Article  Google Scholar 

  • Arkilic E.B., Breuer K.S., Schmidt M.A. (1994). Gaseous flow in microchannels, application of microfabrication to fluid mechanics. ASME FED 197, 57–66

    Google Scholar 

  • Barber, R.W., Emerson, D.R.: A numerical investigation of low Reynolds number gaseous slip flow at the entrance of circular and parallel plate microchannels. Proceedings of the ECCOMAS Computational Fluid Dynamics Conference, Swansea, Wales, UK (2001)

  • Barron R.F., Wang X.M., Warrington R.O., Ameel T.A. (1996). Evaluation of the eigenvalues for the Graetz problem in slip-flow. Int. Commun. Heat Mass Trans. 23, 563–574

    Article  Google Scholar 

  • Barron R.F., Wang X.M., Ameel T.A., Warrington R.O. (1996). The Graetz problem extended to slip flow. Int. J. Heat Mass Trans. 40, 1817–1823

    Article  Google Scholar 

  • Bejan A. (2000). Editorial, J. Porous Media 1 i–ii

  • Bejan A. (2004). Convection Heat Transfer, 3rd edn Chapter 12. John-Wiley, New York

    Google Scholar 

  • Beskok A., Karniadakis G.E. (1994). Simulation of heat and momentum transfer in complex micro geometries, J. Thermophys. Heat Trans. 8(4): 647–653

    Article  Google Scholar 

  • Eckert E.G.R., Drake R.M. (1972). Analysis of Heat and Mass Transfer. McGraw-Hill, New York, pp. 467–486

    Google Scholar 

  • Gad-El-Hak M. (1999). The fluid mechanics of microdevices—The Freeman scholar lecture, J. Fluids Eng. 121, 5–33

    Google Scholar 

  • Haddad O.M., Al-Nimr M.A., AbuZaid M.M. (2005a). The effect of frequency of fluctuating driving force on basic gaseous micro-flows. Acta Mechanica 179, 249–259

    Article  Google Scholar 

  • Haddad O.M., AbuZaid M.M., Al-Nimr M.A. (2005b). Developing free convection gas flow in a vertical open-ended micro-channel filled with porous media. Numer. Heat Trans. Part A 48, 693–710

    Article  Google Scholar 

  • Haddad, O.M., Al-Nimr, M.A., Taamneh, Y.: Hydrodynamic and thermal behavior of gas flow in micro-channels filled with porous media. Accepted for publication in J. Porous Media (2006a)

  • Haddad, O.M., Al-Nimr, M.A., AbuZaid, M.M.: The effect of periodically oscillating driving force on basic micro flows in porous media. Accepted for publication in J. Porous Media (2006b)

  • Hoffman J.D. (2001). Numerical Methods for Engineers and Scientists. Marcel Dekker, New York

    Google Scholar 

  • Larrode F.E., Housiadas C., Drossinos Y. (2000). Slip-flow heat transfer in circular tubes. Int. J. Heat Mass Trans. 43, 2669–2680

    Article  Google Scholar 

  • Liu J.Q., Tai Y.C., Ho C.M.: MEMS for pressure distribution studies of gaseous flows in microchannels. Proc. IEEE Micro-electromech. Syst. 209–215 (1995)

  • Marafie A., Vafai K. (2001). Analysis of non-Darcian effects on temperature differentials in porous media. Int. J. Heat Mass Trans. 44, 4401–4411

    Article  Google Scholar 

  • Shih J.C., Ho C., Liu J., Tai Y. (1996). Monatomic and polyatomic gas flow through uniform microchannels. Microelecromech. Syst. (MEMS) 59, 197–203

    Google Scholar 

  • Shih Y.P., Huang C.C., Tsay S.Y. (1995). Extended Leveque solution for laminar heat transfer to power-law fluids in pipes with wall slip. Int. J. Heat Mass Trans. 38, 403–408

    Article  Google Scholar 

  • Tang G.H., Tao W.Q., He Y.L. (2005). Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Phys. Rev. E 72(56301): 1–8

    Google Scholar 

  • Wang M.L., Ameel T.A., Frazier A.B., Warrington R.O. (1998). Microtube convection heat transfer for a power-law fluid in laminar slip flow with an isoflux boundary condition. Int. Mechanical Eng. Congress and Exposition, Anaheim, CA, HTD-Vol. 361–3, pp. 157–164

  • Wang, X. M.: Evaluation of the eigenvalues of the Graetz problem in slip-flow. M.Sc. Thesis, Louisiana Tech. University, Ruston, Louisiana (1996)

  • Yu, S.P., Ameel, T.A.: Slip flow low Peclet number thermal entry problem within a flat microchannel subject to constant wall temperature. Proceedings of the Conference on Heat Transfer and Transport Phenomena in Microsystems, Banff, Alta, Canada (2000)

  • Yu S.P., Ameel T.A. (2001). Slip-flow heat transfer in rectangular microchannels. Int. J. Heat Mass Trans. 44, 4225–4234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Haddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, O.M., Al-Nimr, M.A. & Al-Omary, J.S. Forced convection of gaseous slip-flow in porous micro-channels under Local Thermal Non-Equilibrium conditions. Transp Porous Med 67, 453–471 (2007). https://doi.org/10.1007/s11242-006-9036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9036-9

Keywords

Navigation