Skip to main content
Log in

Scaling Transformation for the Effect of Temperature-Dependent Fluid Viscosity with Thermophoresis Particle Deposition on MHD-Free Convective Heat and Mass Transfer Over a Porous Stretching Surface

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results, thus, obtained are presented graphically and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B 0 :

Constant magnetic field of strength

C :

Species concentration of the fluid

C w :

Species concentration of the fluid along the wall

C :

Species concentration of the fluid away from the wall

c p :

Specific heat at constant pressure

D :

Coefficient of diffusion

g :

Acceleration due to gravity

T :

Temperature of the fluid

T w :

Temperature of the wall

T :

Temperature of the fluid far away from the wall

u, v:

Velocity components in x and y direction

U(x):

Flow velocity of the fluid away from the wedge

V(x):

Velocity of suction/injection

β :

Coefficient of thermal expansion

β*:

Coefficient of expansion with concentration

ρ :

Density of the fluid

σ :

Electric conductivity

σ 1 :

Stefan–Boltzman constant

κ :

Thermal conductivity of the fluid

μ :

Coefficient of fluid viscosity

μ * :

Constant value of the coefficient of viscosity far away from the sheet

References

  • Afify A.A.: MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat Mass Transf. 40, 495–500 (2004)

    Article  Google Scholar 

  • Asghar S., Hayat T., Kara A.H.: Exact solutions of thin film flows. Nonlinear Dyn. 50, 229–233 (2007)

    Article  Google Scholar 

  • Avramenko A.A., Kobzar S.G., Shevchuk I.V., Kuznetsov A.V., Iwanisov L.T.: Symmetry of turbulent boundary layer flows: investigation of different Eddy viscosity models. Acta Mech. 151, 1–14 (2001)

    Article  Google Scholar 

  • Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, London (1987)

    Google Scholar 

  • Bluman G.W., Kumei S.: Symmetries and Differential Equations. Springer, New York (1989)

    Google Scholar 

  • Chakrabarti A., Gupta A.S.: Hydromagnetic flow heat and mass transfer over a stretching sheet. Q. Appl. Math. 33, 73–78 (1979)

    Google Scholar 

  • Chamka A., Pop I.: Effect of thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass Transf. 31, 421–430 (2004)

    Article  Google Scholar 

  • Chamka A., Jaradat M., Pop I.: Thermophoresis free convection from a vertical cylinder embedded in a porous medium. Int. J. Appl. Mech. Eng. 9, 471–481 (2004)

    Google Scholar 

  • Chen C.-L., Chan K.-C.: Combined effects of thermophoresis and electrophoresis on particle deposition onto a wavy surface disk. Int. J. Heat Mass Transf. 51, 2657–2664 (2008)

    Article  Google Scholar 

  • EL-Hakiem M.A.: Radiation effects on hydromagnetic free convective and mass transfer flow of a gas past a circular cylinder with uniform heat and mass flux. Int. J. Numer. Methods Heat Fluid Flow 19, 445–458 (2009)

    Article  Google Scholar 

  • EL-Hakiem M.A., Rashad A.M.: The effect of radiation on non-Darcy free convection from a vertical cylinder embedded in a fluid-saturated porous medium with a temperature dependent viscosity. J. Porous Media 10, 209–218 (2007)

    Article  Google Scholar 

  • EL-Kabeir S.M.M., EL-Hakiem M.A., Rashad A.M.: Lie group analysis of unsteady MHD three dimensional by natural convection from an inclined stretching surface saturated porous medium. J. Comput. Appl. Math. 213, 582–603 (2008)

    Article  Google Scholar 

  • Epstein M., Hauser G.M., Henry R.E.: Thermophoretic deposition of particles in natural convection flow from vertical plate. ASME J. Heat Transf. 107, 272–276 (1985)

    Article  Google Scholar 

  • Garg V.K., Jayaraj S.: Thermophoresis of aerosol particles in laminar flow over inclined plates. Int. J. Heat Mass Transf. 31, 875–890 (1988)

    Article  Google Scholar 

  • Gary J., Kassoy D.R., Tadjeran H., Zebib A.: The effects of significant viscosity variation on convective heat transport in water saturated porous medium. J. Fluid Mech. 117, 233–241 (1982)

    Article  Google Scholar 

  • Gill S.: A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proc. Camb. Philos. Soc. 47, 96–108 (1951)

    Article  Google Scholar 

  • Goren S.L.: Thermophoresis of aerosol particles in laminar boundary layer on a flat plate. J. Colloid Interface Sci. 61, 77–85 (1977)

    Article  Google Scholar 

  • Hayat T., Mahomed F.M.: Note on an exact solution for the pipe flow of a third-grade fluid. Acta Mech. 190, 233–236 (2007)

    Article  Google Scholar 

  • Hayat T., Kara A.H., Momoniat E.: Exact flow of a third-grade fluid on a porous wall. Int. J. Non-Linear Mech. 38, 1533–1537 (2003)

    Article  Google Scholar 

  • Hayat T., Kara A.H., Momoniat E.: The unsteady flow of a fourth-grade fluid past a porous plate. Math. Comput. Model. 41, 1347–1353 (2005)

    Article  Google Scholar 

  • Hayat T., Ellahi R., Asghar S.: Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of disk and a fluid at infinity. Chem. Eng. Commun. 194, 37–49 (2007)

    Article  Google Scholar 

  • Ibragimov N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    Google Scholar 

  • Ingham D., Pop I.: Transport Phenomena in Porous Media I. Pergamon, Oxford (1998)

    Google Scholar 

  • Ingham D., Pop I.: Transport Phenomena in Porous Media II. Pergamon, Oxford (2002)

    Google Scholar 

  • Jayaraj S., Dinesh K.K., Pillai K.L.: Thermophoresis in natural convection with variable properties. Heat Mass Transf. 34, 469–475 (1999)

    Article  Google Scholar 

  • Ling J.X., Dybbs A.: Forced Convection Over a Flat Plate Submersed in a Porous Medium: Variable Viscosity Case Paper 87-WA/HT-23. American Society of Mechanical Engineers, New York (1987)

    Google Scholar 

  • Mehta K.N., Sood S.: Transient free convection flow with temperature-dependent viscosity in a fluid saturated porous medium. Int. J. Eng. Sci. 30, 1083–1087 (1992)

    Article  Google Scholar 

  • Mohyuddin M.R., Hayat T., Mahomed F.M., Asghar S., Siddiqui A.M.: On solutions of some non-linear differential equations arising in Newtonian and non-Newtonian fluids. Nonlinear Dyn. 35, 229–248 (2004)

    Article  Google Scholar 

  • Mukhopadhyay S., Layek G.C.: Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface. Int. J. Heat Mass Transf. 51, 2167–2178 (2008)

    Article  Google Scholar 

  • Mukhopadhyay S., Layek G.C., Samad S.A.: Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int. J. Heat Mass Transf. 48, 4460–4466 (2005)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Bejan A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Natural convection about a vertical plate embedded in a bidisperse porous medium. Int. J. Heat Mass Transf. 51, 1658–1664 (2008)

    Article  Google Scholar 

  • Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  • Rees D.A., Nield D.A., Kuznetsov A.V.: Vertical free convective boundary-layer flow in a bidisperse porous medium. ASME J. Heat Transf. 130, 1–9 (2008)

    Article  Google Scholar 

  • Sharma P.R., Mathur P.: Steady laminar free convection flow of an electrically conducting fluid along a porous hot vertical plate in the presences of heat source/sink. Indian J. Pure Appl. Math. 26, 1125–1134 (1995)

    Google Scholar 

  • Sivasankaran S., Bhuvaneswari M., Kandaswamy P., Ramasami E.K.: Lie group analysis of natural convection heat and mass transfer in an inclined surface. Nonlinear Anal. Model. Control 11, 201–212 (2006a)

    Google Scholar 

  • Sivasankaran S., Bhuvaneswari M., Kandaswamy P., Ramasami E.K.: Lie group analysis of natural convection heat and mass transfer in an inclined porous surface with heat generation. Int. J. Appl. Math. Mech. 2, 34–40 (2006b)

    Google Scholar 

  • Soh C.W.: Invariant solutions of the unidirectional flow of an electrically charged power-law non-Newtonian fluid over a flat plate in presence of a transverse magnetic field. Commun. Nonlinear Sci. Numer. Simul. 10, 537–548 (2005)

    Article  Google Scholar 

  • Soh C.W., Phiri P.A., Pooe C.A.: Nonequivalent similarity reductions of steady 2D thermal boundary layer equations for an incompressible laminar flow over a continuous moving hot surface. Fluid Dyn. Res. 37, 430–442 (2005)

    Article  Google Scholar 

  • Vajravelu K., Hadjinicolaou A.: Convective heat transfer in an electrically conducting fluid at a stretching surface in uniform free stream. Int. J. Eng. Sci. 35, 1237–1244 (1997)

    Article  Google Scholar 

  • Wang C.C.: Combined effects of inertia and thermophoresis on particle deposition onto a wafer with wavy surface. Int. J. Heat Mass Transf. 49, 1395–1402 (2006)

    Article  Google Scholar 

  • Wang C.C., Chen C.K.: Thermophoresis deposition of particles from a boundary layer flow onto a continuously moving wavy surface. Acta Mech. 181, 139–151 (2006)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M.: Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian fluids. Int. J. Eng. Sci. 35, 731–740 (1997)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M.: Group classification of a non-Newtonian fluid model using classical approach and equivalence transformations. Int. J. Non-Linear Mech. 34, 341–346 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, R., Muhaimin, I. Scaling Transformation for the Effect of Temperature-Dependent Fluid Viscosity with Thermophoresis Particle Deposition on MHD-Free Convective Heat and Mass Transfer Over a Porous Stretching Surface. Transp Porous Med 84, 549–568 (2010). https://doi.org/10.1007/s11242-009-9519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9519-6

Keywords

Navigation