Skip to main content
Log in

Hydrodynamic Boundary Condition at Open-Porous Interface: A Pore-Level Lattice Boltzmann Study

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, we follow the pore-level simulation approach to investigate fluid flow over an open-porous interface using the lattice Boltzmann method. As this approach does not require any specific treatment for the interface, the predicted pore-level velocity field is averaged and used to evaluate the available macroscopic boundary conditions for the interface. Two most common interface boundary conditions are evaluated, and the unknown fitting parameters in them are calculated as a function of porosity of the porous region. Analytical solutions of the velocity profile in the close vicinity of the interface are used to validate the numerical methodology. It is shown that the predicted numerical results for penetration depth in the porous region, flow rate in open channel, and velocity profile in the open and porous regions are in excellent agreement with the predictions of the two available models, if the proposed values of their fitting parameters are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auriault J.L.: On the domain of validity of Brinkman’s equation. Transp Porous Med. 79(2), 215–223 (2010)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)

    Google Scholar 

  • Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)

    Article  Google Scholar 

  • Beavers G.S., Sparrow E.M., Masha B.A.: Boundary condition at a porous surface which bounds a fluid flow. Am. Inst. Chem. Eng. (AIChE) J. 20(3), 596–597 (1974)

    Article  Google Scholar 

  • Chandesris M., Jamet D.: Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J. Heat Mass Transfer 49(13–14), 2137–2150 (2006)

    Article  Google Scholar 

  • Chandesris M., Jamet D.: Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump coefficients. Int J Heat Mass Transfer 50(17–18), 3422–3436 (2007)

    Article  Google Scholar 

  • Chandesris M., Jamet D.: Jump conditions and surface-excess quantities at a fluid/porous interface: A multi-scale approach. Transp. Porous Med. 78(3), 419–438 (2009)

    Article  Google Scholar 

  • Deng C., Martinez D.M.: Viscous flow in a channel partially filled with a porous medium and with wall suction. Chem. Eng. Sci. 60(2), 329–336 (2005)

    Article  Google Scholar 

  • Duman T., Shavit U.: An apparent interface location as a tool to solve the porous interface flow problem. Transp. Porous Med. 78(3), 509–524 (2009)

    Article  Google Scholar 

  • Goyeau B., Lhuillier D., Gobin D., Velarde M.G.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transfer 46(21), 4071–4081 (2003)

    Article  Google Scholar 

  • Gupte S.K., Advani S.G.: Flow near the permeable boundary of a porous medium: An experimental investigation using LDA. Exp. Fluids 22(5), 408–422 (1996)

    Article  Google Scholar 

  • Gupte S.K., Advani S.G.: Flow near the permeable boundary of an aligned fiber preform: An experimental investigation using laser doppler anemometry. Polym. Compos. 18(1), 114–124 (1997)

    Article  Google Scholar 

  • James D.F., Davis A.M.J.: Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47–72 (2001)

    Article  Google Scholar 

  • Larson R.E., Higdon J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166, 449–472 (1986)

    Article  Google Scholar 

  • Larson R.E., Higdon J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow. J. Fluid Mech. 178, 119–136 (1987)

    Article  Google Scholar 

  • Llewellin E.W.: LBFlow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part I: Theory and implementation. Comput. Geosci. 36(2), 115–122 (2010)

    Article  Google Scholar 

  • Llewellin E.W.: LBFlow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part II: Usage and validation. Comput. Geosci. 36(2), 123–132 (2010)

    Article  Google Scholar 

  • Min J.Y., Kim S.J.: A novel methodology for thermal analysis of a composite system consisting of a porous medium and an adjacent fluid layer. J. Heat Transfer 127(6), 648–656 (2005)

    Article  Google Scholar 

  • Nabovati A., Sousa A.C.M.: Fluid flow simulation at open-porous medium interface using the lattice Boltzmann method. Int. J. Numer. Methods Fluids 56(8), 1449–1456 (2008)

    Article  Google Scholar 

  • Nabovati A., Llewellin E.W., Sousa A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. A 40(6–7), 860–869 (2009)

    Article  Google Scholar 

  • Nabovati A., Llewellin E.W., Sousa A.C.M.: Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Compos A 41(4), 453–463 (2010)

    Article  Google Scholar 

  • Neale G., Nader W.: Formulation of boundary conditions at the surface of a porous medium. Soc. Petrol. Eng. J. 14(5), 434–436 (1974)

    Google Scholar 

  • Nield D.A.: The Beavers–Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 78(3), 537–540 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of a transition layer between a fluid and a porous medium: Shear flow in a channel. Transp. Porous Media 78(3), 477–487 (2009)

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. Int. J. Heat Mass Transfer 38(14), 2635–2646 (1995)

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment. Int. J. Heat Mass Transfer 38(14), 2647–2655 (1995)

    Article  Google Scholar 

  • Richardson S.: A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49(2), 327–336 (1971)

    Article  Google Scholar 

  • Saffman P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971)

    Google Scholar 

  • Sahraoui M., Kaviany M.: Slip and no-slip velocity boundary conditions at interface of porous, plain media. In. J. Heat Mass Transfer 35(4), 927–943 (1992)

    Article  Google Scholar 

  • Sahraoui, M., Kaviany, M.: Slip and no-slip temperature boundary conditions at interface of porous, plain media: convection. Part 1. Formulation. 1992 National Heat Transfer Conference, San Diego, California, 6th edn. HTD-vol. 193, pp. 25–33 (1993)

  • Succi S.: The Lattice Boltzmann Equation for Fluid Mechanics and Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Sukop M.C., Thorne D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006)

    Google Scholar 

  • Taylor G.I.: A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49(2), 319–326 (1971)

    Article  Google Scholar 

  • Valdés-Parada F.J., Ochoa-Tapia J.A., Alvarez-Ramirez J.: On the effective viscosity for the Darcy–Brinkman equation. Phys. A 385(1), 69–79 (2007a)

    Article  Google Scholar 

  • Valdés-Parada F.J., Ochoa-Tapia J.A., Alvarez-Ramirez J.: Diffusive mass transport in the fluid-porous medium inter-region: Closure problem solution for the one-domain approach. Chem. Eng. Sci. 62(21), 6054–6068 (2007b)

    Article  Google Scholar 

  • Valdés-Parada F.J., Alvarez-Ramirez J., Goyeau B., Ochoa-Tapia J.A.: Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Med. 78(3), 439–457 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Nabovati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabovati, A., Amon, C.H. Hydrodynamic Boundary Condition at Open-Porous Interface: A Pore-Level Lattice Boltzmann Study. Transp Porous Med 96, 83–95 (2013). https://doi.org/10.1007/s11242-012-0074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0074-1

Keywords

Navigation