Skip to main content
Log in

Recovery of Light Oil by Medium Temperature Oxidation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We study one aspect of combustion in porous media for the recovery of light oil. We assume that there is a temperature range above low temperature combustion where oxygen is added to the aliphatic oils to form oxygenated compounds and below the temperature where cracking and coke formation occurs. In the intermediate range oil is combusted to form small combustion products like water, CO\(_2\), or CO. We call this medium temperature oxidation (MTO). Our simplified model considers light oil recovery when it is displaced by air at medium pressures in linear geometry, for the case when water is absent. The resulting MTO combustion displaces all the oil. There are adjacent vaporization and combustion zones, traveling with the same speed. The MTO reaction is assumed to be slow, so that vaporization is much faster. The solution of the model equations leads to a thermal wave upstream, a MTO wave in the middle and a cold isothermal Buckley–Leverett gas displacement process downstream. One of the unexpected results is that vaporization occurs upstream of the combustion zone. In the initial period the recovery curve is typical of gas displacement, but after a critical amount of air has been injected the cumulative oil recovery increases linearly until all oil has been recovered. In our model, the oil recovery is independent of reaction rate parameters, but the recovery is much faster than for gas displacement. Finally, the recovery is slower for higher boiling point and higher oil viscosity, but faster at higher injection pressure. We give a simple engineering procedure to compute recovery curves for a variety of different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_\mathrm{r}\) :

MTO pre-exponential factor (1/s)

\(c_\mathrm{l}, c_\mathrm{g}\) :

Heat capacity of liquid and gas [J/(mol\(\cdot \)K)]

\(C_\mathrm{m}\) :

Heat capacity of porous rock [J/(m\(^{3}\)K)]

\(D\) :

Gas diffusion coefficient (m\(^2\)/s)

\(f_\mathrm{l}\) :

Fractional flow function for liquid phase

\(J\) :

Leverett \(J\)-function

\(k\) :

Rock permeability (m\(^2\))

\(k_\mathrm{l}, k_\mathrm{g}\) :

Liquid and gas phase permeabilities (m\(^2\))

\(k_\mathrm{e}\) :

Rate constant for evaporation [mol/(m\(^{3}\) s)]

\(n\) :

MTO reaction order with respect to oxygen

\(P_\mathrm{g}\) :

Prevailing gas pressure (Pa)

\(Q_\mathrm{r}\) :

MTO reaction enthalpy per mole of oxygen at reservoir temperature (J/mol)

\(Q_\mathrm{v}\) :

Oil vaporization heat at reservoir temperature (J/mol)

\(R\) :

Ideal gas constant [J/(mol\(\cdot \)K)]

\(s_\mathrm{l}, s_\mathrm{g}\) :

Saturations of liquid and gas phases

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(T^\mathrm{b}\) :

Boiling temperature of liquid (K)

\(T^\mathrm{ini}\) :

Reservoir temperature (K)

\(T^\mathrm{ac}\) :

MTO activation temperature (K)

\(u_\mathrm{l}, u_\mathrm{g}, u\) :

Liquid, gas, and total Darcy velocities (m/s)

\(u_{gj}\) :

Darcy velocity of component \(j\) = h, o, r in gas phase (m/s)

\(u_\mathrm{g}^\mathrm{inj}\) :

Injection Darcy velocity of gas (m/s)

\(W_\mathrm{v}, W_\mathrm{r}\) :

Vaporization and MTO reaction rates [mol/(m\(^{3}s\))]

\(x\) :

Spatial coordinate (m)

\(Y_\mathrm{h}, Y_\mathrm{o}, Y_\mathrm{r}\) :

Gas molar fractions: hydrocarbons, oxygen, remaining components (mol/mol)

\(Y_\mathrm{o}^\mathrm{inj}\) :

Oxygen fraction in injected gas

\(\varphi \) :

Porosity

\(\lambda \) :

Thermal conductivity of porous medium [W/(m\(\cdot \)K)]

\(\mu _\mathrm{l}, \mu _\mathrm{g}\) :

Viscosity of liquid and gas (Pa\(\cdot \)s)

\(\nu _\mathrm{l}, \nu _\mathrm{g}\) :

Stoichiometric coefficients in the MTO reaction (2.1)

\(\rho _\mathrm{l}, \rho _\mathrm{g}\) :

Molar density of liquid and gas (mol/m\(^{3}\))

\(\sigma \) :

Liquid oil surface tension (N/m)

\(\varTheta \) :

Liquid oil/rock contact angle

References

  • Abou-Kassem, J.H., Farouq Ali, S.M., Ferrer, J.: Appraisal of steamflood models. Rev. Tec. Ing. 9, 45–58 (1986)

    Google Scholar 

  • Akin, S., Kok, M.V., Bagci, S., Karacan, O.: Oxidation of heavy oil and their SARA fractions: its role in modeling in-situ combustion. In SPE 63230 (2000)

  • Bakry, A., Al-Salaymeh, A., Al-Muhtaseb, A.H., Abu-Jrai, A., Trimis, D.: Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: novel flame stabilization technique. Fuel 90(2), 647–658 (2011)

    Article  Google Scholar 

  • Barzin, Y., Moore, R., Mehta, S., Ursenbach, M., Tabasinejad, F.: Impact of Distillation on the Combustion Kinetics of high pressure air injection (HPAI). In SPE 129691-Improved Oil Recovery Symposium (2010a)

  • Barzin, Y., Moore, R., Mehta, S., Mallory, D., Ursenbach, M., Tabasinejad, F.: Role of vapor phase in oxidation/combustion kinetics of high-pressure air injection (HPAI). In SPE 135641 (2010b)

  • Bayliss, A., Matkowsky, B.J.: From traveling waves to chaos in combustion. SIAM J. Appl. Math. 54, 147–174 (1994)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)

    Google Scholar 

  • Boxerman, A.A., Yambaev, M.F.: In-situ air transformation process into a light-oil reservoir. In 12th European Symposium on Improved Oil Recovery (2003)

  • Bruining, J., Mailybaev, A.A., Marchesin, D.: Filtration combustion in wet porous medium. SIAM J. Appl. Math. 70, 1157–1177 (2009)

    Article  Google Scholar 

  • Castanier, L.M., Brigham, W.E.: Modifying in-situ combustion with metallic additives. In Situ 21(1), 27–45 (1997)

    Google Scholar 

  • Castanier, L.M., Brigham, W.E.: Upgrading of crude oil via in situ combustion. J. Petrol. Sci. Eng. 39, 125–136 (2003)

    Article  Google Scholar 

  • Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier Science, Amsterdam (1978)

    Google Scholar 

  • De Zwart, A., van Batenburg, D., Blom, C., Tsolakidis, A., Glandt, C., Boerrigter, P.: The modeling challenge of high pressure air injection. In SPE/DOE Symposium on Improved Oil Recovery (2008)

  • Fassihi, M., Brigham, W., Ramey Jr, H.: Reaction kinetics of in-situ combustion: part 2—modeling. Old SPE J. 24(4), 408–416 (1984)

    Google Scholar 

  • Fassihi, M.R., Yannimaras, D.V., Kumar, V.K.: Estimation of recovery factor in light-oil air-injection projects. SPE Reserv. Eng. 12, 173–178 (1997)

    Google Scholar 

  • Fickett, W., Davis, W.C.: Detonation: Theory and Experiment. Dover, Mineola (2011)

    Google Scholar 

  • Freitag, N.P., Verkoczy, B.: Low-temperature oxidation of oils in terms of SARA fractions: why simple reaction models don’t work. J. Can. Petrol. Technol. 44(3), 54–61 (2005)

    Google Scholar 

  • Germain, P., Geyelin, J.L.: Air injection into a light oil reservoir: the horse creek project. In Middle East Oil Show and Conference (1997)

  • Gerritsen, M., Kovscek, A., Castanier, L., Nilsson, J., Younis, R., He, B.: Experimental investigation and high resolution simulator of in-situ combustion processes; 1. Simulator design and improved combustion with metallic additives. In SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting (2004)

  • Gillham, T.H., Cerveny, B.W., Turek, E.A., Yannimaras, D.V.: Keys to increasing production via air injection in gulf coast light oil reservoirs. In SPE Annual Technical Conference and Exhibition, SPE 38848-MS (1997)

  • Gillham, T.H., Cerveny, B.W., Fornea, M.A., Bassiouni, D.: Low cost IOR: an update on the W. Hackberry air injection project. In Paper SPE-39642 presented at the SPE/DOE improved oil recovery symposium, Tulsa, OK, 19–22 April (1998)

  • Greaves, M., Ren, S., Rathbone, R., Fishlock, T., Ireland, R.: Improved residual light oil recovery by air injection (LTO process). J. Can. Petrol. Technol. 39, 57–61 (2000a)

    Google Scholar 

  • Greaves, M., Young, T.J., El-Usta, S., Rathbone, R.R., Ren, S.R., Xia, T.X.: Air injection into light and medium heavy oil reservoirs: combustion tube studies on West of Shetlands Clair oil and light Australian oil. Chem. Eng. Res. Des. 78(5), 721–730 (2000b)

    Article  Google Scholar 

  • Gutierrez, D., Taylor, A., Kumar, V., Ursenbach, M., Moore, R., Mehta, S.: Recovery factors in high-pressure air injection projects revisited. SPE Reserv. Eval. Eng. 11(6), 1097–1106 (2008)

    Google Scholar 

  • Gutierrez, D., Skoreyko, F., Moore, R., Mehta, S., Ursenbach, M.: The challenge of predicting field performance of air injection projects based on laboratory and numerical modelling. J. Can. Petrol. Technol. 48(4), 23–33 (2009)

    Google Scholar 

  • Hardy, W.C., Fletcher, P.B., Shepard, J.C., Dittman, E.W., Zadow, D.W.: In-situ combustion in a thin reservoir containing high-gravity oil. J. Petrol. Technol. 24(2), 199–208 (1972)

    Google Scholar 

  • Harterich, J.: Viscous profiles of traveling waves in scalar balance laws: the canard case. Methods Appl. Anal. 10(1), 97–118 (2003)

    Google Scholar 

  • Helfferich, F.G.: Kinetics of Multistep Reactions, vol. 40. Elsevier Science, Amsterdam (2004)

    Google Scholar 

  • Khoshnevis Gargar, N., Achterbergh, N., Rudolph-Flöter, S., Bruining, H.: In-Situ oil combustion: processes perpendicular to the main gas flow direction. In SPE Annual Technical Conference and Exhibition, SPE 134655-MS (2010)

  • Kok, M.V., Karacan, C.O.: Behavior and effect of SARA fractions of oil during combustion. SPE Reserv. Eval. Eng. 3, 380–385 (2000)

    Google Scholar 

  • Kulikovskii, A.G., Pashchenko, N.T.: Propagation regimes of self-supported light-detonation waves. Fluid Dyn. 40(5), 818–828 (2005)

    Article  Google Scholar 

  • Levenspiel, O.: Chemical Reaction Engineering. Wiley, New York (1999)

    Google Scholar 

  • Lin, C.Y., Chen, W.H., Lee, S.T., Culham, W.E.: Numerical simulation of combustion tube experiments and the associated kinetics of in-situ combustion processes. SPE J. 24, 657–666 (1984)

    Google Scholar 

  • Lin, C.Y., Chen, W.H., Culham, W.E.: New kinetic models for thermal cracking of crude oils in in-situ combustion processes. SPE Reserv. Eng. 2, 54–66 (1987)

    Google Scholar 

  • Mailybaev, A.A., Bruining, J., Marchesin, D.: Analysis of in situ combustion of oil with pyrolysis and vaporization. Combust. Flame 158(6), 1097–1108 (2010a)

    Article  Google Scholar 

  • Mailybaev, A.A., Bruining, J., Marchesin, D., Rudolph, S., Heimovaara, T.J.: Cleaning tar deposits by diluted air combustion. In First International Conference on Frontiers in Shallow Subsurface Technology, Delft, The Netherlands, 20–22 January (2010b)

  • Mailybaev, A.A., Marchesin, D., Bruining, J.: Resonance in low-temperature oxidation waves for porous media. SIAM J. Math. Anal. 43, 2230–2252 (2011)

    Article  Google Scholar 

  • Matkowsky, B.J., Sivashinsky, G.: Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35, 465–478 (1978)

    Article  Google Scholar 

  • Montes, A.R., Gutierrez, D., Moore, R.G., Mehta, S.A., Ursenbach, M.G.: Is high-pressure air injection (HPAI) simply a flue-gas flood? J. Can. Petrol. Technol. 49(2), 56–63 (2010)

    Google Scholar 

  • Oleinik, O.A.: Construction of a generalized solution of the Cauchy problem for a quasi-linear equation of first order by the introduction of vanishing viscosity. Uspekhi Matematicheskikh Nauk 14(2), 159–164 (1959)

    Google Scholar 

  • Pereira, F.M., Oliveira, A.A.M., Fachini, F.F.: Asymptotic analysis of stationary adiabatic premixed flames in porous inert media. Combust. Flame 156(1), 152–165 (2009)

    Article  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., John Paul, O.C., Reid, R.C.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  • Quintard, M., Bletzacker, L., Chenu, D., Whitaker, S.: Nonlinear, multicomponent, mass transport in porous media. Chem. Eng. Sci. 61(8), 2643–2669 (2006)

    Article  Google Scholar 

  • Sanmiguel, J., Mallory, D., Mehta, S. , Moore, R.: Formation heat treatment process by combustion of gases around the wellbore. J. Can. Petrol. Technol. 41(8), 71 (2002)

    Google Scholar 

  • Schott, G.L.: Kinetic studies of hydroxyl radicals in shock waves. III. The OH concentration maximum in the hydrogen-oxygen reaction. J. Chem. Phys. 32, 710 (1960)

    Article  Google Scholar 

  • Schult, D.A., Matkowsky, B.J., Volpert, V.A., Fernandez-Pello, A.C.: Forced forward smolder combustion. Combust. Flame 104, 1–26 (1996)

    Article  Google Scholar 

  • Schulte, W.: Challenges and strategy for increased oil recovery. In International Petroleum Technology Conference (2005)

  • Sharpe, G.J., Falle, S.: One-dimensional nonlinear stability of pathological detonations. J. Fluid Mech. 414(1), 339–366 (2000)

    Article  Google Scholar 

  • Wahle, C.W., Matkowsky, B.J., Aldushin, A.P.: Effects of gas–solid nonequilibrium in filtration combustion. Combust. Sci. Technol. 175, 1389–1499 (2003)

    Article  Google Scholar 

  • Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. Trans. AIME 195, 91–98 (1952)

    Google Scholar 

  • Wood, W.W., Salsburg, Z.W.: Analysis of steady-state supported one-dimensional detonations and shocks. Phys. Fluids 3, 549–566 (1960)

    Article  Google Scholar 

  • Xu, Z., Jianyi, L., Liangtian, S., Shilun, L., Weihua, L.: Research on the mechanisms of enhancing recovery of light-oil reservoir by air-injected low-temperature oxidation technique. Nat. Gas Ind. 24, 78–80 (2004)

    Google Scholar 

  • Zheng, C.H., Cheng, L.M., Li, T., Luo, Z.Y., Cen, K.F.: Filtration combustion characteristics of low calorific gas in sic foams. Fuel 89(9), 2331–2337 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out within the context of the ISAPP Knowledge Centre. ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project of the Netherlands Organization of Applied Scientific Research TNO, Shell International Exploration and Production, and Delft University of Technology. The paper was also supported by grants of PRH32 (ANP 731948/2010, PETROBRAS 6000.0061847.10.4), FAPERJ (E-26/102.965/2011, E-26/111.416 /2010, E-26/110.658/2012, E-26/110.237/2012, E-26/111.369/2012), and CNPq (301564/2009-4, 472923/2010-2, 477907/2011-3, 305519/2012-3, 402299/2012-4, 470635/2012-6). The authors thank TU Delft and IMPA for providing the opportunity for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bruining.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mailybaev, A.A., Bruining, J. & Marchesin, D. Recovery of Light Oil by Medium Temperature Oxidation. Transp Porous Med 97, 317–343 (2013). https://doi.org/10.1007/s11242-013-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0126-1

Keywords

Navigation