Skip to main content
Log in

Modeling Non-Darcian Single- and Two-Phase Flow in Transparent Replicas of Rough-Walled Rock Fractures

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

While it is generally assumed that in the viscous flow regime, the two-phase flow relative permeabilities in fractured and porous media depend uniquely on the phase saturations, several studies have shown that for non-Darcian flows (i.e., where the inertial forces are not negligible compared with the viscous forces), the relative permeabilities not only depend on phase saturations but also on the flow regime. Experimental results on inertial single- and two-phase flows in two transparent replicas of real rough fractures are presented and modeled combining a generalization of the single-phase flow Darcy’s law with the apparent permeability concept. The experimental setup was designed to measure injected fluid flow rates, pressure drop within the fracture, and fluid saturation by image processing. For both fractures, single-phase flow experiments were modeled by means of the full cubic inertial law which allowed the determination of the intrinsic hydrodynamic parameters. Using these parameters, the apparent permeability of each fracture was calculated as a function of the Reynolds number, leading to an elegant means to compare the two fractures in terms of hydraulic behavior versus flow regime. Also, a method for determining the experimental transition flow rate between the weak inertia and the strong inertia flow regimes is proposed. Two-phase flow experiments consisted in measuring the pressure drop and the fluid saturation within the fractures, for various constant values of the liquid flow rate and for increasing values of the gas flow rate. Regardless of the explored flow regime, two-phase flow relative permeabilities were calculated as the ratio of the single phase flow pressure drop per unit length divided by the two-phase flow pressure drop per unit length, and were plotted versus the measured fluid saturation. Results confirm the dependence of the relative permeabilities on the flow regime. Also the proposed generalization of Darcy’s law shows that the relative permeabilities versus fluid saturation follow physical meaningful trends for different liquid and gas flow rates. The presented model fits correctly the liquid and gas experimental relative permeabilities as well as the fluid saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A\) :

Cross-sectional area of the fracture or porous media (\(\text{ m }^{2}\))

\(a\) :

Corey saturation power law exponent

\(b\) :

Corey saturation power law exponent

\(C\) :

Concentration (g/l)

\(Ca\) :

Capillary number

\(F\) :

\(F\)-function

\(H\) :

Local aperture (m)

\(h\) :

Hydraulic aperture of the fracture (m)

\(I\) :

Intensity

\(K\) :

Intrinsic permeability (\(\text{ m }^{2}\))

\(K_{\mathrm{a}}\) :

Apparent permeability (\(\text{ m }^{2}\))

\(k_{\mathrm{r}}\) :

Relative permeability

\(Q\) :

Volumetric flow rate (\(\text{ m }^{3}/\text{ s }\))

\(Re\) :

Reynolds number (\(Re = K\beta \rho Q/\mu A\))

\(Re_{\mathrm{c}}\) :

Weak inertia cubic law Reynolds number \(Re_{\mathrm{c}} =\sqrt{K\gamma }{\rho Q}/{\mu A}\)

\(S\) :

Fluid saturation

\(w\) :

Width of the fracture (m)

\(\Delta P/L\) :

Pressure drop per unit length (Pa/m)

\(\beta \) :

Inertial coefficient (\(\text{ m }^{-1}\))

\(\beta _{\mathrm{r}}\) :

Relative inertial coefficient

\(\gamma \) :

Inertial coefficient

\(\varepsilon \) :

Solute absorptivity (\(\text{ m }^{2}/\text{ kg }\))

\(\mu \) :

Dynamic viscosity (Pa s)

\(\rho \) :

Density (\(\text{ kg/m }^{3}\))

g:

Gas

l:

Liquid

s:

Single-phase flow

t:

Transition

References

  • Andrade, J.S., Costa, U.M.S., Almeida, M.P., Makse, H.A., Stanley, H.E.: Inertial effects on fluid flow through disordered porous media. Phys. Rev. Lett. 82, 5249–5252 (1999). doi:10.1103/PhysRevLett.82.5249

    Article  Google Scholar 

  • Auriault, J.-L.: Nonsaturated deformable porous media: quasistatics. Transp. Porous Media 2, 45–64 (1987)

    Article  Google Scholar 

  • Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. Ph.D. thesis, University of Bordeaux I, Bordeaux (1990)

  • Bauget, F., Fourar, M.: Non-Fickian dispersion in a single fracture. J. Contam. Hydrol. 100(3–4), 137–148 (2008). doi:10.1016/j.jconhyd.2008.06.005

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover, Mineola (1972)

    Google Scholar 

  • Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92(B2), 1337–1347 (1987). doi:10.1029/JB092iB02p01337

    Article  Google Scholar 

  • Brush, D.J., Thomson, N.R.: Fluid flow in synthetic roughwalled fractures: Navier–Stokes, Stokes, and local cubic law simulations. Water Resour. Res. 39(4), 1085 (2003). doi:10.1029/2002WR001346

    Article  Google Scholar 

  • Buchlin, J.M., Stubos, A.: Phase change phenomena at liquid saturated self heated particulate beds. In: Bear, J., Buchlin, J.M. (eds.) Modeling and Applications of Transport Phenomena in Porous Media. Kluwer Acad. Pub, Dordrecht (1987)

    Google Scholar 

  • Buès, M., Panfilov, M., Oltean, C.: Macroscale model and inertia-viscous effects for Navier–Stokes flow in a radial fracture with corrugated walls. J. Fluid Mech. 504, 41–60 (2004). doi:10.1017/S002211200400816X

    Article  Google Scholar 

  • Chauveteau, G., Thirriot, C.: Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche 2, 141–148 (1967). doi:10.1051/lhb/1967009

    Article  Google Scholar 

  • Chen, C., Horne, R.N., Fourar, M.: Experimental study of liquid–gas flow structure effect on relative permeabilities in a fracture. Water Resour. Res. 40, W08301 (2004). doi:10.1029/2004WR003026

    Google Scholar 

  • Chen, C., Horne, R.N.: Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour. Res. 42, W03430 (2006). doi:10.1029/2004WR003837

    Google Scholar 

  • Chen, Z., Lyons, S.L., Qin, G.: Derivation of the Forchheimer law via homogenization. Transp. Porous Media 44(2), 325–335 (2001). doi:10.1023/A:1010749114251

    Article  Google Scholar 

  • Corey, A.T.: The interrelationship between gas and oil relative permeabilities. Prod. Mon. 19(1), 38–41 (1954)

    Google Scholar 

  • Cornell, D., Katz, D.L.: Flow of gases through consolidated porous media. Ind. Eng. Chem. 45(10), 2145–2153 (1953). doi:10.1021/ie50526a021

    Article  Google Scholar 

  • Cvetkovic, V.D.: A continuum approach to high velocity flow in a porous medium. Transp. Porous Media 1(1), 63–97 (1986). doi:10.1007/BF01036526

    Article  Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1854)

    Google Scholar 

  • de Gennes, P.G.: Theory of slow biphasic flows in porous media. Physico-Chem. Hydrodyn. 4, 175–185 (1983)

    Google Scholar 

  • Detwiler, R.L., Pringle, S.E., Glass, R.J.: Measurement of fracture aperture fields using transmitted light: an evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water Resour. Res. 35(9), 2605–2617 (1999). doi:10.1029/1999WR900164

    Article  Google Scholar 

  • Diomampo, G.P.: Relative permeability through fractures. MS thesis, Stanford University, Stanford (2001)

  • Dullien, A.L., Azzam, M.I.S.: Flow rate-pressure gradient measurement in periodically nonuniform capillary tube. AIChE J. 19, 222–229 (1973). doi:10.1002/aic.690190204

    Article  Google Scholar 

  • Firdaouss, M., Guermond, J.-L., Le-quéré, P.: Nonlinear correction to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331–350 (1997). doi:10.1017/S0022112097005843

    Article  Google Scholar 

  • Forchheimer, P.: Wasserberwegng durch Boden. Forschtlft ver. D. Ing. 45(50), 1782–1788 (1901)

    Google Scholar 

  • Fourar, M., Bories, S.: Experimental study of air–water two-phase flow through a fracture (narrow channel). Int. J. Multiphase Flow 21(4), 621–637 (1995). doi:10.1016/0301-9322(95)00005-I

    Article  Google Scholar 

  • Fourar, M., Bories, S., Lenormand, R., Persoff, P.: Two-phase flow in smooth and rough fractures: measurement and correlation by porous-media and pipe-flow models. Water Resour. Res. 29(11), 3699–3708 (1993). doi:10.1029/93WR01529

    Article  Google Scholar 

  • Fourar, M., Lenormand, R.: A viscous coupling model for relative permeabilities in fractures. Paper SPE 49006 presented at the 1977 SPE annual technical conference and exhibition, New Orleans, 27–30 Sept 1998. doi:10.2118/49006-MS

  • Fourar, M., Lenormand, R.: Inertial effects in two-phase flow through fractures. Oil Gas Sci. Tech. Rev. IFP 55(3), 259–268 (2000). doi:10.2516/ogst:2000018

    Article  Google Scholar 

  • Fourar, M., Lenormand, R.: A new model for two-phase flows at high velocities through porous media and fractures. J. Pet. Sci. Eng. 30(2), 121–127 (2001). doi:10.1016/S0920-4105(01)00109-7

    Article  Google Scholar 

  • Fourar, M., Radilla, G., Lenormand, R., Moyne, C.: On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media. Adv. Water Resour. 27(6), 669–677 (2004). doi:10.1016/j.advwatres.2004.02.021

    Article  Google Scholar 

  • Geertsma, M.: Estimating the coefficient of inertial resistance fluid flow through porous media. SPE J. 14(5), 445–450 (1974). doi:10.2118/4706-PA

    Google Scholar 

  • Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions. Transp. Porous Media 29(2), 191–206 (1997). doi:10.1023/A:1006533931383

    Article  Google Scholar 

  • Hubbert, M.K.: Darcy law and the field equations of the flow of underground fluids. Trans. Am. Inst. Min. Mandal. Eng. 207, 222–239 (1956)

    Google Scholar 

  • Isakov, E., Ogilvie, S.R., Taylor, C.W., Glover, P.W.J.: Fluid flow through rough fractures in rocks I: high resolution aperture determinations. Earth Planet. Sci. Lett. 191(3–4), 267–282 (2001). doi:10.1016/S0012-821X(01)00424-1

    Article  Google Scholar 

  • Kalaydjian, F., Legait, B.: Perméabilités relatives couplées dans les écoulements en capillaries et en milieux poreux. C. R. Acad. Sci. Paris 304(série II), 1035–1038 (1987)

    Google Scholar 

  • Lee H.S., Catton I. (1984) Two-phase flow in stratified porous media. 6th Information exchange meanding on debris coolability, Los Angeles

  • Lipinski, R.J.: A one-dimensional particle bed dryout. Model. Trans. Am. Nucl. Soc. 38, 386–387 (1981)

    Google Scholar 

  • Lipinski, R.J.: A model for boiling and dryout in particle beds. Report SAND 82–0756 (NUREG/CR-2646), Sandia Labs., Albuquerque (1982)

  • Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45, 39–48 (1949)

    Google Scholar 

  • MacDonald, I.F., El-Sayed, M.S., Mow, K., Dullien, F.A.L.: Flow through porous media, the Ergun equation revisited. Ind. Eng. Chem. Fundam. 18(3), 199–208 (1979). doi:10.1021/i160071a001

    Article  Google Scholar 

  • Mahoney, D., Doggett, K.: Multiphase flow in fractures. In: Proceedings from the international symposium of the society of core analysts in Calgary, Calgary (1997)

  • Mei, C.C., Auriault, J.-L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991). doi:10.1017/S0022112091001258

    Article  Google Scholar 

  • Miskimins, J.L., Lopez-Hernandez, H.D., Barree, R.D.: Non-Darcy flow in hydraulic fractures: does it really matter? SPE 96389 annual technical conference and exhibition, Dallas, 9–12 Oct 2005

  • Murphy, J.R., Thomson, N.R.: Two-phase flow in a variable aperture fracture. Water Resour. Res. 29(10), 3453–3476 (1993). doi:10.1029/93WR01285

    Article  Google Scholar 

  • Muskat, M.: The flow of Homogeneous Fluids Through Porous Media. International Human Resources Development Corporation (reprint from McGraw-Hill), Boston (1937)

  • Neasham, J.W.: The morphology of dispersed clay in sandstone reservoirs and its effects on sandstone shaliness, pore space and fluid flow properties. Paper SPE 6858 presented at the 1977 SPE annual technical conference and exhibition, Denver, 9–12 Oct 1977 doi:10.2118/6858-MS

  • Nicholl, M.J., Glass, R.J.: Wetting phase permeability in a partially saturated horizontal fracture. Proceedings of the 5th annual international high-level radioactive waste management conference 2007–2019, Las Vegas, 22–26 May 1994

  • Noman, R., Archer, M.S.: The effect of pore structure on Non-Darcy gas flow in some low permeability reservoir rocks. Paper SPE 16400 presented at the SPE/DOE low permeability reservoirs symposium, Denver, 18–19 May 1987. doi:10.2118/16400-MS

  • Nowamooz, A., Radilla, G., Fourar, M.: Non-Darcian flow in transparent replica of rough-walled rock fractures. Water Resour. Res. 45, W07406 (2009). doi:10.1029/2008WR007315

    Article  Google Scholar 

  • Pyrak-Nolte, L.J., Helgeston, D., Haley, G.M., Morris, J.W.: Immiscible fluid flow. In: Tillersson and Wawersik, Balkema A.A. (eds) Fracture, Proceeding of the 33rd U.S. Rock mechanics symposium, pp. 571–578, Rotterdam (1992)

  • Raats, D.A.C., Klute, A.: Transport in soils: the balance of momentum. Soil Sci. Soc. Am. J. 32(4), 161–166 (1968). doi:10.2136/sssaj1968.03615995003200040013x

    Article  Google Scholar 

  • Rasoloarijaona, M., Auriault, J.L.: Nonlinear seepage flow through a rigid porous medium. Eur. J. Mech. B/Fluids 13(2), 177–195 (1994)

    Google Scholar 

  • Rocha, R.P.A., Cruz, M.E.: Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp. Porous Media 83(2), 349–373 (2010). doi:10.1007/s11242-009-9445-7

    Article  Google Scholar 

  • Romm, E.S.: Fluid flow in fractured rocks. Translated from the Russian, English translation: Blake, W.R., Bartlesville, O.K., 1972, Nedra Publishing House, Moscow (1966)

  • Rose, W.: Petroleum reservoir engineering at the crossroads (ways of thinking and doing). Iran Petroleum Inst. Bull. 46, 23–27 (1972)

    Google Scholar 

  • Rossen, W.R., Kumar, A.T.A.: Single and two-phase flow in natural fractures. Paper SPE 24195 presented at the 67th SPE annual technical conference and exhibition, Washington, DC, 4–7 Oct 1992. doi:10.2118/24915-MS

  • Saez, A.E., Carbonell, R.G.: Hydrodynamic parameters for gas–liquid co-current flow in packed beds. AIChE J. 31(1), 52–62 (1985). doi:10.1002/aic.690310105

    Article  Google Scholar 

  • Sanchez-Palencia, E.: Non homogeneous media and vibration theory. Lecture Notes in Physics, Springer, New York (1980). doi:10.1007/3-540-10000-8

  • Schneebeli, G.: Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans un écoulement de filtration. La Houille Blanche 2, 141–149 (1955). doi:10.1051/lhb/1955030

    Article  Google Scholar 

  • Scheidegger, A.E.: The physics of flow through porous media. Macmillan, New York (1960)

    Google Scholar 

  • Schulenberg, T., Muller, U.: A refined model for the coolability of core debris with flow entry from bottom. 6th Information Exchange Meanding on Debris Coolability, EPRI NP-4455, 108–113 Los Angeles (1984)

  • Turland, B.D., Moore, K.A.: One-dimensional models of boiling and dryout. Post accident debris cooling. Paper presented at 5th Post Accident Heat Removal Information Exchange Mtg., Karlsruhe (1983)

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986). doi:10.1007/BF01036523

    Article  Google Scholar 

  • Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980). doi:10.1029/WR016i006p01016

    Article  Google Scholar 

  • Zarcone, C., Lenormand, R.: Détermination expérimentale du couplage visqueux dans les écoulements diphasiques en milieu poreux. C. R. Acad. Sci. Paris 318(série II), 1429–1435 (1994)

    Google Scholar 

  • Zimmerman, R.W., Yeo, I.W.: Fluid flow in rock fractures: From the Navier–Stokes equations to the cubic law. In: Faybishenko, B., Witherspoon, P.A., Benton, S.M. (eds.) Dynamics of Fluids in Fractured Rock, Geophys. Monogr. (122), pp. 213–224. AGU, Washington, DC (2000)

  • Zimmerman, R.W., Al-Yaarubi, A.H., Pain, C.S., Grattoni, C.A.: Nonlinear regimes of fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 41, 163 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Radilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radilla, G., Nowamooz, A. & Fourar, M. Modeling Non-Darcian Single- and Two-Phase Flow in Transparent Replicas of Rough-Walled Rock Fractures. Transp Porous Med 98, 401–426 (2013). https://doi.org/10.1007/s11242-013-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0150-1

Keywords

Navigation