Skip to main content
Log in

Chaotic and Periodic Natural Convection for Moderate and High Prandtl Numbers in a Porous Layer subject to Vibrations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The analysis of natural convection for moderate and high Prandtl numbers in a fluid-saturated porous layer heated from below and subject to vibrations is presented with a twofold objective. First, it aims at investigating the significance of including a time derivative term in Darcy’s equation when wave phenomena are being considered. Second, it is dedicated to reporting results related to the route to chaos for moderate and high Prandtl number convection. The results present conclusive evidence indicating that the time derivative term in Darcy’s equation cannot be neglected when wave phenomena are being considered even when the coefficient to this term is extremely small. The results also show occasional chaotic “bursts” at specific values (or small range of values) of the scaled Rayleigh number, \(R\), exceeding some threshold. This behavior is quite distinct from the case without forced vibrations, when the chaotic solution occupies a wide range of \(R\) values, interrupted only by periodic “bursts.” Periodic and chaotic solution alternate as the value of the scaled Rayleigh number varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(Da\) :

Darcy number, defined by \({k_*}/H_*^2 \)

\({\hat{\mathbf{e}}}_x\) :

Unit vector in the \(x\) direction

\({\hat{\mathbf{e}}}_z \) :

Unit vector in the z direction

\({\hat{\mathbf{e}}}_n \) :

Unit vector normal to the boundary, positive outwards

\(g_{*}\) :

Acceleration due to gravity

\(H_{*}\) :

The height of the layer

\(k_*\) :

Permeability of the porous domain

\(K_f\) :

Thermal conductivity of the fluid phase

\(K_s\) :

Thermal conductivity of the solid phase

\(K_{e^*}\) :

Effective thermal conductivity, defined by \(\varphi K_f +\left( {1-\varphi } \right) K_s \)

\(L_{*}\) :

The length of the porous domain

\(L\) :

Reciprocal of aspect ratio, equals \({L_*}/{H_*}\)

\(p\) :

Reduced pressure (dimensionless)

\(Pr\) :

Porous media effective Prandtl number, equals \({\nu _*}/{\alpha _{e^*} }\)

Ra :

Porous media Rayleigh number, equals \({\beta _*\Delta T_c g_*k_*H_*}/{\alpha _{e^*} \nu _*}\)

\(R\) :

Scaled Rayleigh number, equals \({Ra}/{4 \pi ^{2}}\)

\(t\) :

Time (dimensionless)

\(T\) :

Dimensionless temperature, \({\left( {T-T_C } \right) }/{\left( {T_H -T_C } \right) }\)

\(T_C\) :

Cold wall temperature

\(T_H\) :

Hot wall temperature

\(u \) :

Horizontal \(x\) component of the filtration velocity

\(w \) :

Vertical \(z\) component of the filtration velocity

\(x \) :

Horizontal length co-ordinate

\(z\) :

Vertical co-ordinate

\(X\) :

Rescaled amplitude

\(Y\) :

Rescaled amplitude

\(Z\) :

Rescaled amplitude

\(\alpha \) :

A parameter related to the time derivative term in Darcy’s equation

\(\alpha _{e^{*}}\) :

Effective thermal diffusivity, defined by \({\left[ {\varphi K_f +\left( {1-\varphi } \right) K_s } \right] }/{\rho _f c_{p,f} }\)

\(\beta _{*}\) :

Thermal expansion coefficient

\(\gamma \) :

A parameter defined by \({L^{2}}/{\left( {L^{2}+1} \right) }\)

\(\phi \) :

Porosity

\(\nu _{*}\) :

Fluid’s kinematic viscosity

\(\psi \) :

Stream function

\(\Delta T_c\) :

Characteristic temperature difference, equals \(\left( {T_H -T_C } \right) \)

\(\omega \) :

Forced vibration frequency

\(\delta \) :

Forced vibration amplitude

\(*\) :

Dimensional values

cr :

Critical values

\(C\) :

Related to the cold wall

\(H\) :

Related to the hot wall

\(f\) :

Related to the fluid phase

\(s\) :

Related to the solid phase

References

  • Bhadauria, B.S.: Double diffusive convection in a porous medium with modulated temperature on the boundaries. Transp. Porous Media 70(2), 191–211 (2007)

    Article  Google Scholar 

  • Bhadauria, B.S., Kiran, P.: Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation. Transp. Porous Media 100, 279–295 (2013)

    Article  Google Scholar 

  • Bardan, G., Mojtabi, A.: On the Horton–Rogers–Lapwood convective instability with vertical vibration: onset of convection. Phys. Fluids 12, 2723–2731 (2000)

    Article  Google Scholar 

  • Bejan, A.: Convection Heat Transfer, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  • Charrier-Mojtabi, M.C., Razi, Y.P., Maliwan, K., Mojtabi, A.: Influence of vibration on Soret-driven convection in porous media. Numer. Heat Transf. Part A 46, 981–993 (2004)

    Article  Google Scholar 

  • Charrier-Mojtabi, M.C., Elhajjar, B., Mojtabi, A.: Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Physics of Fluids 19 (124104/1-14), (2007).

  • Elhajjar, B., Mojtabi, A., Charrier-Mojtabi, M.C.: Influence of vertical vibrations on the separation of a binary mixture in a horizontal porous layer heated from below. Int. J. Heat Mass Transf. 52, 165–172 (2009)

    Article  Google Scholar 

  • Govender, S.: Stability of convection in a gravity modulated porous layer heated from below. Transp. Porous Media 57, 113–123 (2004)

    Article  Google Scholar 

  • Govender, S.: Linear stability and convection in a gravity modulated porous layer heated from below: transition from synchronous to subharmonic solutions. Transp. Porous Media 59, 227–238 (2005)

    Article  Google Scholar 

  • Govender, S.: Destabilising a fluid saturated gravity modulated porous layer heated from above. Transp. Porous Media 59, 215–225 (2005)

    Article  Google Scholar 

  • Govender, S.: Stability analysis of a porous layer heated from below and subjected to low frequency vibration: frozen time analysis. Transp. Porous Media 59, 239–247 (2005)

    Article  Google Scholar 

  • Govender, S.: Weak non-linear analysis of convection in a gravity modulated porous layer. Transp. Porous Media 60, 33–42 (2005)

    Article  Google Scholar 

  • Govender, S.: Stability of gravity driven convection in cylindrical porous layer subjected to vibration. Transp. Porous Media 63, 489–502 (2006)

    Article  Google Scholar 

  • Govender, S.: Vadasz number influence on vibration in a rotating porous layer placed far away from the axis of rotation. ASME J Heat Transfer 132, (112601/1-5) (2010).

  • Govender, S.: Stability of moderate Vadasz number solutal convection in a cylindrical mushy layer subjected to vertical vibration. Transp. Porous Media 88, 225–234 (2011)

    Article  Google Scholar 

  • Govender, S.: Natural convection in gravity-modulated porous layers, in Emerging topics in heat and mass transfer in porous media - theory and applications of transport in porous media. P. Vadasz (Ed.) 22, 133–148 (2008)

    Google Scholar 

  • Hull, T.E., Enright, W.H., Jackson, K.R.: User’s Guide for DVERK: a Subroutine for Solving Non-Stiff ODE’s. Rept. 100, Department of Computer Science, University of Toronto, Canada, 1976.

  • Jounet, A., Bardan, G.: Onset of thermohaline convection in a rectangular porous cavity in the presence of vertical vibration. Phys. Fluids 13(11), 3234–3246 (2001)

    Article  Google Scholar 

  • Lombardo, S., Mulone, G.: Necessary and sufficient conditions of global nonlinear stability for rotating double-diffusive convection in a porous medium. Continuum Mech. Thermodyn. 14, 527–540 (2002)

    Article  Google Scholar 

  • Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  • Magyari, E.: The “Butterfly Effect” in a porous slab. Transp. Porous Media 84(3), 711–715 (2010)

    Article  Google Scholar 

  • Magyari, E.: The Vadasz–Olek model regarded as a system of coupled oscillators. Transp. Porous Media 85(2), 415–435 (2010)

    Article  Google Scholar 

  • Mahmud, M.N., Hashim, I.: Small and moderate Prandtl number chaotic convection in porous media in the presence of feedback control. Transp. Porous Media 84(2), 432–440 (2010)

    Google Scholar 

  • Mahmud, M.N., Hashim, I.: Small and moderate Vadasz number chaotic convection in porous media in the presence of non-Boussinesq effects and feedback control. Phys. Lett. A 375, 2382–2393 (2011)

    Article  Google Scholar 

  • Mulone, G., Straughan, B.: An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. Z. Angew. Math. Mech. ZAMM 86(7), 507–520 (2006)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer Verlag, New York (2013)

    Book  Google Scholar 

  • Roslan, R., Mahmud, M.N., Hashim, I.: Effects of feedback control on chaotic convection in fluid-saturated porous media. Int. J. Heat Mass Transf. 54(1–3), 404–412 (2011)

    Article  Google Scholar 

  • Sheu, L.J.: An autonomous system for chaotic convection in a porous medium using a thermal non-equilibrium model. Chaos, Solitons & Fractals 30(3), 672–689 (2006)

    Article  Google Scholar 

  • Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, New York (1982)

    Book  Google Scholar 

  • Straughan, B.: A sharp nonlinear stability threshold in rotating porous convection. Proc. R. Soc. Lond. A 457, 87–93 (2001)

    Article  Google Scholar 

  • Straughan, B.: Resonant porous penetrative convection. Proc. R. Soc. Lond. A 460, 2913–2927 (2004)

    Article  Google Scholar 

  • Vadasz, J.J., Meyer, J.P., Govender, S.: Vibration effects on weak turbulent natural convection in a porous layer heated from below. Int. Comm. Heat Mass Transf. 45, 100–110 (2013)

    Article  Google Scholar 

  • Vadasz, P.: Coriolis effect on gravity driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351–375 (1998)

    Article  Google Scholar 

  • Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999a)

    Article  Google Scholar 

  • Vadasz, P.: Subcritical transitions to chaos and hysteresis in a fluid layer heated from below. Int. J. Heat Mass Transf. 43(5), 705–724 (1999b)

    Article  Google Scholar 

  • Vadasz, P.: Heat transfer regimes and hysteresis in porous media convection. ASME J Heat Transf. 123, 145–156 (2001)

    Article  Google Scholar 

  • Vadasz, P.: Controlling chaos in porous media convection by using feedback control. Transp. Porous Media 85(1), 287–298 (2010)

    Article  Google Scholar 

  • Vadasz, P., Olek, S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37(1), 69–91 (1999)

    Article  Google Scholar 

  • Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000)

    Article  Google Scholar 

  • Vafai, K., Hadim, H.: Overview of current computational studies of heat transfer in porous media and their applications – natural and mixed convection. Ch. 10. In: Minkowycz, W.J., Sparrow, E.M. (eds.) Advances in Numerical Heat Transfer, vol. 2. Taylor & Francis, New York (2000)

    Google Scholar 

Download references

Acknowledgments

The University of Pretoria and Prof. JP. Meyer gave much support for this Project, both financially and intellectually. One of the authors (JJV) wishes to thank them for all the support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan J. Vadasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadasz, J.J., Meyer, J.P. & Govender, S. Chaotic and Periodic Natural Convection for Moderate and High Prandtl Numbers in a Porous Layer subject to Vibrations. Transp Porous Med 103, 279–294 (2014). https://doi.org/10.1007/s11242-014-0301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0301-z

Keywords

Navigation