Skip to main content
Log in

Passive Boundary Layer Flow Control Using Porous Lamination

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The flow over a porous laminated flat plate is investigated from a flow control perspective through experiments and computations. A square array of circular cylinders is used to model the porous lamination. We determine the velocities at the fluid–porous interface by solving the two-dimensional Navier–Stokes and the continuity equations using a staggered flow solver and using LDV in experiments. The control parameters for the porous region are porosity, \(\phi \) and Reynolds number, Re, based on the diameter of the circular cylinders used to model the porous lamination. Computations are conducted for \(0.4< \phi < 0.9\) and \(25< Re < 1000\), and the experiments are conducted for \(\phi = 0.65\) and 0.8 at \(Re \approx 391,\ 497\) and 803. The permeability of the porous lamination is observed to induce a slip velocity at the interface, effectively making it a slip wall. The slip velocity is seen to be increasing functions of \(\phi \) and Re. For higher porosities at higher Re, the slip velocity shows non-uniform and unsteady behavior and a breakdown Reynolds number is defined based on this characteristic. A map demarcating the two regimes of flow is drawn from the computational and experimental data. We observe that the boundary layer over the porous lamination is thinner than the Blasius boundary layer and the shear stress is higher at locations over the porous lamination. We note that the porous lamination helps maintain a favorable pressure gradient at the interface which delays separation. The suitable range of porosities for effective passive separation control is deduced from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agelinchaab, M., Tachie, M.F., Ruth, D.W.: Velocity measurement of flow through a model three-dimensional porous medium. Phys. Fluids 18(1), 017105-1–11 (2006)

    Article  Google Scholar 

  • Anderson, T.B., Jackson, R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  Google Scholar 

  • Arthur, J.K., Ruth, D.W., Tachie, M.F.: PIV measurements of flow through a model porous medium with varying boundary conditions. J. Fluid Mech. 629, 343–374 (2009)

    Article  Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Beavers, G.S., Sparrow, E.M., Masha, B.A.: Boundary condition at a porous surface which bounds a fluid flow. AIChE J. 20, 596–597 (1974)

    Article  Google Scholar 

  • Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1949)

    Article  Google Scholar 

  • Chandesris, M., Jamet, D.: Boundary conditions at a planar fluid–porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 49, 2137–2150 (2006)

    Article  Google Scholar 

  • Chandesris, M., Jamet, D.: Boundary conditions at a fluid–porous interface: an a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 50(17), 3422–3436 (2007)

    Article  Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Goharzadeh, A., Khalili, A., Jorgensen, B.: Transition layer thickness at a fluid–porous interface. Phys. Fluids 17, 057,102 (2005)

    Article  Google Scholar 

  • Goyeau, B., Lhuillier, D., Gobin, D., Velarde, M.: Momentum transport at a fluid–porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)

    Article  Google Scholar 

  • Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  Google Scholar 

  • Gupte, S.K., Advani, S.G.: Flow near the permeable boundary of a porous medium: an experimental investigation using LDA. Exp. Fluids 22(5), 408–422 (1997)

    Article  Google Scholar 

  • Gad-el Hak, M.: Flow Control: Passive, Active and Reactive Flow Management, 1st edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • James, D.F., Davis, A.M.J.: Flow at the interface of a fibrous porous medium. J. Fluid Mech. 426, 47–72 (2001)

    Article  Google Scholar 

  • Koch, D.L., Ladd, A.J.C.: Moderate Reynolds number flow through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 31–66 (1997)

    Article  Google Scholar 

  • Kumar, S.A., Mathur, M., Sameen, A., Lal, S.A.: Effects of Prandtl number on the laminar cross flow past a heated cylinder. Phys. Fluids 28(11), 113–603 (2016)

    Google Scholar 

  • Larson, R.E., Higdon, J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166, 449–472 (1986)

    Article  Google Scholar 

  • Larson, R.E., Higdon, J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow. J. Fluid Mech. 178, 119–136 (1987)

    Article  Google Scholar 

  • Morad, M., Khalili, A.: Transition layer thickness in a fluid–porous medium of multi-sized spherical beads. Exp. Fluids 46, 323–330 (2009)

    Article  Google Scholar 

  • Nield, D.A.: Onset of convection in a fluid layer overlying a layer of porous medium. J. Fluid Mech. 81, 513–522 (1977)

    Article  Google Scholar 

  • Nield, D.A.: Modeling the effect of surface tension on the onset of natural convection in a saturated porous medium. Transp. Porous Media 31, 365–368 (1998)

    Article  Google Scholar 

  • Nield, D.A.: The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Media 78, 537–540 (2009)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I : theoretical development. Int. J. Heat Mass Transf. 38(4), 2635–2646 (1995a)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II: comparison with experiment. Int. J. Heat Mass Transf. 38(4), 2647–2655 (1995b)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Valdés-Parada, F.J., Goyeau, B., Lasseux, D.: Fluid motion in the fluid/porous medium inter-region. Revista Mexicana de Ingeniería Química 166(3), 923–938 (2017)

    Google Scholar 

  • Richardson, S.: A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327–336 (1971)

    Article  Google Scholar 

  • Rosenhead, L. (ed.): Laminar Boundary Layers. Oxford University Press, Oxford (1963)

    Google Scholar 

  • Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  • Sahraoui, M., Kaviany, M.: Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int. J. Heat Mass Transf. 35(4), 927–943 (1992)

    Article  Google Scholar 

  • Sangani, A., Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 8(3), 193–206 (1982)

    Article  Google Scholar 

  • Sangani, A.S., Yao, C.: Transport processes in random arrays of cylinders. I. Thermal conduction. Phys. Fluids 31, 2426–2434 (1988a)

    Article  Google Scholar 

  • Sangani, A.S., Yao, C.: Transport processes in random arrays of cylinders. II. Viscous flow. Phys. Fluids 31, 2435–2444 (1988b)

    Article  Google Scholar 

  • Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, New York (2000)

    Book  Google Scholar 

  • Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13(6), 1066–1071 (1967)

    Article  Google Scholar 

  • Tachie, M.F., James, D.F., Currie, I.G.: Velocity measurements of a shear flow penetrating a porous medium. J. Fluid Mech. 493, 319–343 (2003)

    Article  Google Scholar 

  • Taylor, G.I.: A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49, 319–326 (1971)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Alvarez-Ramírez, J., Goyeau, B., Ochoa-Tapia, J.A.: Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78(3), 439–457 (2009)

    Article  Google Scholar 

  • Valdés-Parada, F.J., Aguilar-Madera, C.G., Ochoa-Tapia, J.A., Goyeau, B.: Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327–339 (2013)

    Article  Google Scholar 

  • Whitaker, S.: The equations of motion in porous media. Chem. Eng. Sci. 21(3), 291–300 (1966)

    Article  Google Scholar 

  • Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13(3), 420–427 (1967)

    Article  Google Scholar 

  • Whitaker, S.: A simple geometrical derivation of the spatial averaging theorem. Chem. Eng. Educ. 19(1) (1985)

  • Whitaker, S.: The Method of Volume Averaging. Theory and Applications of Transport in Porous Media. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  • Zhang, Q., Prosperetti, A.: Pressure-driven flow in a two-dimensional channel with porous walls. J. Fluid Mech. 631, 1–21 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the High Performance Computing Environment (HPCE) at IIT Madras for providing the computational facilities used in this study. The authors also acknowledge the financial support from Aeronautical Research and Development Board (AR&DB), DRDO, Government of India, for the experiments done in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sameen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, K.A., Sameen, A. & Lal, S.A. Passive Boundary Layer Flow Control Using Porous Lamination. Transp Porous Med 124, 533–551 (2018). https://doi.org/10.1007/s11242-018-1083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1083-5

Keywords

Navigation