Skip to main content
Log in

A Multiscale Fractal Transport Model with Multilayer Sorption and Effective Porosity Effects

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In order to study gas transport properties of fractured shale gas reservoirs for the accurate estimation of shale gas production, a new multiscale fractal transport model with an effective porosity model was proposed based on the fractal theory and the multilayer fractal Frenkel–Halsey–Hill (FHH) adsorption. In shale matrix, both fractal microstructures of pores (such as pore size distribution, flow path tortuosity, and pore surface roughness) and multiscale flow mechanisms (including slip flow and Knudsen diffusion) were coupled. In fracture network, fractal fracture length distribution, stress compaction, and gas pressure were introduced to formulate a new fracture permeability model. These permeability and effective porosity models were then incorporated into the governing equations of gas flow and the deformation equation of reservoirs to form a numerical model. This numerical model was solved within COMSOL Multiphysics for shale gas recovery. Both transport models in shale matrix and fracture network were validated by experimental data or compared with other models. Finally, sensitivity analysis was conducted to identify key parameters to gas recovery enhancement. It was found that the multilayer gas adsorption and fractal microstructures have great impacts on gas production in shale reservoirs. The cumulative gas production can be increased by 26% after 8000 days when the multilayer adsorbed gas is considered. Larger surface fractal dimension and larger tortuosity fractal dimension represent more roughness pore surface, higher flow resistance, and lower cumulative gas production. Bigger pore diameter fractal dimension means more pores, higher permeability, and higher cumulative gas production. Our model with fractal FHH adsorption was in better agreements with field data from Marcellus and Barnett shale reservoirs than other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahmad, A.L., Mustafa, N.N.: Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel–Halsey–Hill (FHH) model. J. Colloid Interface Sci. 301(2), 575–584 (2006)

    Article  Google Scholar 

  • Beskok, A., Karniadakis, G.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  • Brunauer, S., Emmett, P., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  • Cai, J., Lin, D., Singh, H., Wei, W., Zhou, S.: Shale gas transport model in 3D fractal porous media with variable pore sizes. Mar. Pet. Geol. 98, 437–447 (2018)

    Article  Google Scholar 

  • Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011)

    Article  Google Scholar 

  • Cao, R., Wang, Y., Cheng, L., Ma, Y.Z., Tian, X., An, N.: A new model for determining the effective permeability of tight formation. Transp. Porous Media 112(1), 21–37 (2016)

    Article  Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82(2), 375–384 (2010)

    Article  Google Scholar 

  • Cui, X., Bustin, R.M.: Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull. 89(89), 1181–1202 (2005)

    Article  Google Scholar 

  • Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 710(12), 641–658 (2012)

    Article  Google Scholar 

  • Eftekhari, B., Marder, M., Patzek, T.: Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales. J. Nat. Gas Sci. Eng. 56, 141–151 (2018)

    Article  Google Scholar 

  • Fan, D., Ettehadtavakkol, A.: Semi-analytical modeling of shale gas flow through fractal induced fracture networks with microseismic data. Fuel 193, 444–459 (2017)

    Article  Google Scholar 

  • Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122(4), 2541–2552 (2017)

    Article  Google Scholar 

  • Ghanbarian, B., Perfect, E., Liu, H.: A geometrical aperture-width relationship for rock fractures. Fractals. 27(1), 1940002 (2019)

    Article  Google Scholar 

  • Hu, B., Wang, J.G., Wu, D., Wang, H.: Impacts of zone fractal properties on shale gas productivity of a multiple fractured horizontal well. Fractals. 27(2), 1950006 (2019). https://doi.org/10.1142/S0218348X19500063

    Article  Google Scholar 

  • Hunt, A., Ghanbarian, B., Saville, K.: Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma 207, 268–278 (2013)

    Article  Google Scholar 

  • Javadpour, F.: Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 48(8), 16–21 (2009)

    Article  Google Scholar 

  • Jia, B., Li, D., Tsau, J.S., Barati, R.: Gas permeability evolution during production in the Marcellus and Eagle Ford shales: coupling diffusion/slip-flow, geomechanics, and adsorption/desorption. In: SPE/AAPG/SEG Unconventional Resources Technology Conference, 24–26 July, Austin, Texas, USA (2017)

  • Karniadakis, G.E., Beskok, A., Aluru, N.R.: MicroFlows and Nanoflows—Fundamentals and Simulation. Interdisciplinary Applied Mathematics Series. Springer, New York (2005)

    Google Scholar 

  • Klimczak, C., Schultz, R.A., Parashar, R., Reeves, D.M.: Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol. J. 18(4), 851–862 (2010)

    Article  Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. Socar Proc. 2(2), 200–213 (1941)

    Google Scholar 

  • Lee, S., Fischer, T.B., Stokes, M.R., Klingler, R.J., Ilavsky, J., Mccarty, D.K., Wigand, M.O., Derkowski, A., Winans, R.E.: Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: ultrasmall-angle x-ray scattering study. Energy Fuels 28(11), 6772–6779 (2014)

    Article  Google Scholar 

  • Lim, K.T., Aziz, K.: Matrix-fracture transfer shape factors for dual-porosity simulators. J. Pet. Sci. Eng. 13(3–4), 169–178 (1995)

    Article  Google Scholar 

  • Liu, K., Ostadhassan, M.: Multi-scale fractal analysis of pores in shale rocks. J. Appl. Geophys. 140, 1–10 (2017)

    Article  Google Scholar 

  • Liu, R., Li, B., Jiang, Y., Huang, N.: Review: mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrogeol. J. 24, 1623–1649 (2016)

    Article  Google Scholar 

  • Mengal, S., Wattenbarger, R.: Accounting for adsorbed gas in shale gas reservoirs. Society of Petroleum Engineers. SPE-141085-MS (2011) https://doi.org/10.2118/141085-ms

  • Miao, T., Yu, B., Duan, Y., Fang, Q.: A fractal analysis of permeability for fractured rocks. Int. J. Heat Mass Transf. 81(81), 75–80 (2015)

    Article  Google Scholar 

  • Michel, G., Sigal, R., Civan, F., Devegowda, D.: Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-Darcy flow mechanisms. In: SPE Technical Conference & Exhibition. Society of Petroleum Engineers (2011) https://doi.org/10.2118/147438-ms

  • Miller, A.A.: The Variance of Methane Adsorption and Its Relation to Thermal Maturity in the Marcellus Shale. Master’s thesis, University of Texas at Arlington (2015)

  • Millán, H., Govea-Alcaide, E., García-Fornaris, I.: Truncated fractal modeling of H2O-vapor adsorption isotherms. Geoderma 206, 14–23 (2013)

    Article  Google Scholar 

  • Neuzil, C.E., Tracy, J.V.: Flow through fractures. Water Resour. Res. 17(1), 191–199 (1981)

    Article  Google Scholar 

  • Olson, J.E.: Sublinear scaling of fracture aperture versus length: an exception or the rule? J. Geophys. Res. Solid Earth. (2003). https://doi.org/10.1029/2001jb000419

    Article  Google Scholar 

  • Pang, Y., Soliman, M.Y., Deng, H., Emadi, H.: Analysis of effective porosity and effective permeability in shale-gas reservoirs with consideration of gas adsorption and stress effects. SPE J. 26(2), 1739–1759 (2017)

    Article  Google Scholar 

  • Patzek, T., Male, F., Marder, M.: A simple model of gas production from hydrofractured horizontal wells in shales. AAPG Bull. 98(12), 2507–2529 (2014)

    Article  Google Scholar 

  • Patzek, T., Male, F., Marder, M.: Gas production in the Barnett shale obeys a simple scaling theory. Proc. Natl. A Sci. 110(49), 19731–19736 (2013)

    Article  Google Scholar 

  • Pfeifer, P., Obert, M., Cole, M.W.: Fractal BET and FHH theories of adsorption: a comparative study. Proc. R. Soc. Lond. A 423, 169–188 (1989a). https://doi.org/10.1098/rspa.1989.0049

    Article  Google Scholar 

  • Pfeifer, P., Wu, Y.J., Cole, M.W., Krim, J.: Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 62(17), 1997–2000 (1989b). https://doi.org/10.1103/PhysRevLett.62

    Article  Google Scholar 

  • Sheng, G., Javadpour, F., Su, Y.: Effect of microscale compressibility on apparent porosity and permeability in shale gas reservoirs. Int. J. Heat Mass Transf. 120, 56–65 (2018)

    Article  Google Scholar 

  • Sun, H., Yao, J., Fan, D.Y., Wang, C.C., Sun, Z.: Gas transport mode criteria in ultra-tight porous media. Int. J. Heat Mass Transf. 83, 192–199 (2015)

    Article  Google Scholar 

  • Tan, X.H., Kui, M.Q., Li, X.P., Mao, Z.L., Xiao, H.: Permeability and porosity models of bi-fractal porous media. Int. J. Mod. Phys. B 31(29), 1750219 (2017)

    Article  Google Scholar 

  • Turcio, M., Reyes, J.M., Camacho, R., Lira-Galeana, C., Vargas, R.O., Manero, O.: Calculation of effective permeability for the BMP model in fractal porous media. J. Pet. Sci. Eng. 103(3), 51–60 (2013)

    Article  Google Scholar 

  • Vajda, P., Felinger, A.: Multilayer adsorption on fractal surfaces. J. Chromatogr. A 1324, 121–127 (2014)

    Article  Google Scholar 

  • Wang, F., Liu, Z., Jiao, L., Wang, C., Guo, H.: A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals 25(3), 1750042 (2017)

    Article  Google Scholar 

  • Wang, J., Hu, B., Liu, H., Han, Y., Liu, J.: Effects of ‘soft-hard’ compaction and multiscale flow on the shale gas production from a multistage hydraulic fractured horizontal well. J. Pet. Sci. Eng. 170, 873–887 (2018)

    Article  Google Scholar 

  • Warpinksi, N., Teufel, L.: Influence of geologic discontinuities on hydraulic fracture propagation. J. Pet. Technol. 39(2), 209–220 (1987). https://doi.org/10.2118/13224-PA

    Article  Google Scholar 

  • Wu, J., Yu, B.: A fractal resistance model for flow through porous media. Int. J. Heat Mass Transf. 71(3), 331–343 (2008)

    Google Scholar 

  • Wu, K., Li, X., Guo, C., Chen, Z.: Adsorbed gas surface diffusion and bulk gas transport in nanopores of shale reservoirs with real gas effect-adsorption-mechanical coupling. SPE Reservoir Simulation Symposium 23–25 February, Houston, Texas, USA. SPE-173201-MS (2015) https://doi.org/10.2118/173201-ms

  • Xia, Y., Cai, J., Wei, W., Hu, X., Wang, X., Ge, X.: A new method for calculating fractal dimensions of porous media based on pore size distribution. Fractals 26(3), 1850006 (2018)

    Article  Google Scholar 

  • Xu, P., Yu, B.: Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31(1), 74–81 (2008)

    Article  Google Scholar 

  • Yang, C., Zhang, J., Wang, X., Tang, X., Chen, Y., Jiang, L., Gong, X.: Nanoscale pore structure and fractal characteristics of marine-continental transitional shale: a case study from the lower permian Shanxi shale in the southeastern ordos basin, China. Mar. Pet. Geol. 88, 54–68 (2017)

    Article  Google Scholar 

  • Yeager, B., Meyer, B.: Injection/fall-off testing in the Marcellus shale: using reservoir knowledge to improve operational efficiency. In: SPE 139067, Presented at SPE Eastern Regional Meeting, October 12–14, Morgantown, WV (2010). https://doi.org/10.2118/139067-ms

  • Yu, B., Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int J. Heat Mass Transf. 45(14), 2983–2993 (2002)

    Article  Google Scholar 

  • Yu, B., Li, J.: Some fractal characters of porous media. Fractals 9(03), 365–372 (2001)

    Article  Google Scholar 

  • Yu, W., Sepehrnoori, K.: Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs. Fuel 116(1), 455–464 (2014)

    Article  Google Scholar 

  • Yu, W., Sepehrnoori, K., Patzek, T.: Modeling gas adsorption in marcellus shale with Langmuir and BET Isotherms. SPE J. 21(2), 589–600 (2016)

    Article  Google Scholar 

  • Yu, W., Zhang, T., Song, D., Sepehrnoori, K.: Numerical study of the effect of uneven proppant distribution between multiple fractures on shale gas well performance. Fuel 142, 189–198 (2015)

    Article  Google Scholar 

  • Zamirian, M., Aminian, K., Ameri, S., Fathi, E.: New steady-state technique for measuring shale core plug permeability. Society of Petroleum Engineers, SPE-171613-MS (2014). https://doi.org/10.2118/171613-ms

  • Zhang, J., Li, X., Wei, Q., Sun, K., Zhang, G., Wang, F.: Characterization of full-sized pore structure and fractal characteristics of marine–continental transitional Longtan formation shale of Sichuan basin, South China. Energy Fuels 30(10), 10490–10504 (2017)

    Article  Google Scholar 

  • Zhang, L., Li, J., Tang, H., Guo, J.: Fractal pore structure model and multilayer fractal adsorption in shale. Fractals 22(03), 1440010 (2014)

    Article  Google Scholar 

  • Zheng, Q., Fan, J., Li, X., Wang, S.: Fractal model of gas diffusion in fractured porous media. Fractals 26(3), 1850035 (2018)

    Article  Google Scholar 

  • Zhou, S., Xue, H., Ning, Y., Guo, W., Zhang, Q.: Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane. Fuel 211, 140–148 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Fundamental Research Funds for the Central Universities (Grant No. 2018ZZCX04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of Adsorbed Gas Porosity

The gas amount of adsorption per unit mass of shale V (m3/kg) can be written as

$$ V = V_{m} \left[ {\ln \left( {\frac{{p_{0} }}{{p_{m} }}} \right)} \right]^{{D_{s} - 3}} . $$
(44)

The mass of gas adsorbed per unit shale volume \( m_{\text{ads}} \) (kg/m3) is

$$ m_{\text{ads}} = \frac{{\rho_{s} M}}{{V_{\text{std}} }}V_{m} \left[ {\ln \left( {\frac{{p_{0} }}{{p_{m} }}} \right)} \right]^{{D_{s} - 3}} = \rho_{s} \rho_{\text{ga}} V_{m} \left[ {\ln \left( {\frac{{p_{0} }}{{p_{m} }}} \right)} \right]^{{D_{s} - 3}} , $$
(45)

where \( V_{\text{std}} \) is the molar volume of gas at standard conditions, m3/mol. Thus, the porosity of adsorbed gas \( \phi_{\text{ads}} \), which is the volume of adsorbed gas per unit shale volume, is expressed as

$$ \phi_{\text{ads}} = \frac{{m_{\text{ads}} }}{{\rho_{\text{ads}} }}V_{m} \frac{{\rho_{\text{s}} \rho_{\text{ga}} }}{{\rho_{\text{ads}} }}\left[ {\ln \left( {\frac{{p_{0} }}{{p_{m} }}} \right)} \right]^{{D_{s} - 3}} . $$
(46)

Appendix B: Two Permeability Models and Their Computational Parameters

The permeability model proposed by Sun et al. (2015) is

$$ k_{a} = k_{\infty } \left( {1 + \alpha \left( {\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}} \right)\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}} \right)\left( {1 + \frac{{4\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}}}{{1 - b\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}}}} \right) $$
(47)

and

$$ \alpha \left( {\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}} \right){ = }\frac{{128^{2} }}{15\pi }\tan^{ - 1} \left[ {4\left( {\frac{{k_{B} T}}{{\sqrt 2 \pi \delta^{2} p_{m} R_{h} }}} \right)^{0.4} } \right]. $$
(48)

The parameters used in Sun’s model in Fig. 4 are listed in Table 7.

Table 7 Parameters of Sun’s model

The permeability model proposed by Darabi et al. (2012) is

$$ k_{a} = k_{D} \left( {1 + \frac{B}{{p_{m} }}} \right) $$
(49)
$$ B = \frac{\mu \phi }{{k_{D} \tau }}\left( {\frac{{d_{m} }}{{2R_{\text{avg}} }}} \right)^{{D_{f} - 2}} D_{K} + \sqrt {\frac{8\pi RT}{M}} \frac{\mu }{{R_{\text{avg}} }}\left( {\frac{2}{\alpha } - 1} \right). $$
(50)

The parameters used in Darabi’s model in Fig. 4 are listed in Table 8.

Table 8 Parameters of Darabi’s model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.G., Hu, B., Wu, D. et al. A Multiscale Fractal Transport Model with Multilayer Sorption and Effective Porosity Effects. Transp Porous Med 129, 25–51 (2019). https://doi.org/10.1007/s11242-019-01276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01276-0

Keywords

Navigation