Skip to main content
Log in

A Study of the Role of Microfractures in Counter-Current Spontaneous Imbibition by Lattice Boltzmann Simulation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

During waterflooding, spontaneous imbibition is a fundamental recovery mechanism in fractured reservoirs. A large number of numerical and experimental studies have been devoted to understand the interaction mechanism between the matrix and the fractures at the core scale under various boundary conditions. Little attention has been paid, however, to the effect of microfractures on pore-scale spontaneous imbibition. In this study, five models with various types of microfractures, embedded in the same porous matrix, are used to investigate their role in counter-current spontaneous imbibition, using an optimized color-gradient lattice Boltzmann method. During the entire counter-current imbibition, the influence of the microfractures on the macro-recovery of the non-wetting fluid and the two-fluid interfaces, including the initial and local dynamics of the interfaces, and the evolution of the interface morphology, is analyzed in detail. The results indicate that microfractures have little influence on both the interfacial dynamics at the initial stage and the local interface dynamics in the matrix. The evolution of the interface morphology is, however, controlled by the geometric shape of the microfractures. In addition, the microfractures improve significantly the recovery of oil. The length of a single microfracture and the bifurcation angle of a microfracture bifurcated into two other microfractures affect significantly the recovery curve by influencing the evolution of the two-phase interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abd, A.S., Alyafei, N.: Numerical investigation on the effect of boundary conditions on the scaling of spontaneous imbibition. Oil Gas Sci. Technol. 73, 71 (2018)

    Article  Google Scholar 

  • Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., Durner, W.: Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31(9), 1151–1173 (2008)

    Article  Google Scholar 

  • Bakhta, A., Leclaire, S., Vidal, D., Bertrand, F., Cheriet, M.: Multiscale simulation of ink seepage into paper: a mesoscopic variational model. Comput. Phys. Commun. 239, 1–13 (2019)

    Article  Google Scholar 

  • Blunt, M.J.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  • Cai, J., Perfect, E., Cheng, C.-L., Hu, X.: Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18), 5142–5151 (2014)

    Article  Google Scholar 

  • Chen, Y., Li, Y., Valocchi, A.J., Christensen, K.T.: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 212, 14–27 (2018)

    Article  Google Scholar 

  • Frank, F., Liu, C., Alpak, F.O., Berg, S., Riviere, B.: Direct numerical simulation of flow on pore-scale images using the phase-field method. SPE J. 23(5), 1833–1850 (2018)

    Article  Google Scholar 

  • Ghassemzadeh, J., Hashemi, M., Sartor, L., Sahimi, M.: Pore network simulation of imbibition into paper during coating: I. Model development. AIChE J. 47(3), 519–535 (2001)

    Article  Google Scholar 

  • Golparvar, A., Zhou, Y., Wu, K., Ma, J., Yu, Z.: A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Adv. Geo-Energy Res. 2(4), 418–440 (2018)

    Article  Google Scholar 

  • Gu, Q., Zhu, L., Zhang, Y., Liu, H.: Pore-scale study of counter-current imbibition in strongly water-wet fractured porous media using lattice Boltzmann method. Phys. Fluids 31(8), 086602 (2019)

    Article  Google Scholar 

  • Gunde, A., Babadagli, T., Roy, S.S., Mitra, S.K.: Pore-scale interfacial dynamics and oil-water relative permeabilities of capillary driven counter-current flow in fractured porous media. J. Pet. Sci. Eng. 103, 106–114 (2013)

    Article  Google Scholar 

  • Harimi, B., Masihi, M., Mirzaei-Paiaman, A., Hamidpour, E.: Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs. J. Pet. Sci. Eng. 174, 1–13 (2019)

    Article  Google Scholar 

  • Hashemi, M., Dabir, B., Sahimi, M.: Dynamics of two-phase flow in porous media: simultaneous invasion of two fluids. AIChE J. 45(7), 1365–1382 (1999)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Oil recovery by counter-current spontaneous imbibition: effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type. J. Pet. Sci. Eng. 59(1–2), 106–122 (2007)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E 77(6), 066311 (2008)

    Article  Google Scholar 

  • Hatiboglu, C.U., Babadagli, T.: Experimental and visual analysis of co- and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities. J. Pet. Sci. Eng. 70(3–4), 214–228 (2010)

    Article  Google Scholar 

  • Huang, H., Sukop, M., Lu, X.: Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley, London (2015)

    Book  Google Scholar 

  • Hyvaluoma, J., Raiskinmaki, P., Jasberg, A., Koponen, A., Kataja, M., Timonen, J.: Simulation of liquid penetration in paper. Phys. Rev. E 73(3), 036705 (2006)

    Article  Google Scholar 

  • Jafari, I., Masihi, M., Zarandi, M.N.: Experimental study on imbibition displacement mechanisms of two-phase fluid using micromodel: fracture network, distribution of pore size, and matrix construction. Phys. Fluids 29(12), 122004 (2017a)

    Article  Google Scholar 

  • Jafari, I., Masihi, M., Zarandi, M.N.: Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: influences of water injection velocity, fracture aperture, and grains geometry. Phys. Fluids 29(11), 113305 (2017b)

    Article  Google Scholar 

  • Kibria, M.G., Hu, Q.H., Liu, H., Zhang, Y.X., Kang, J.H.: Pore structure, wettability, and spontaneous imbibition of Woodford Shale, Permian Basin. West Texas. Mar. Pet. Geol. 91, 735–748 (2018)

    Article  Google Scholar 

  • Landry, C.J., Karpyn, Z.T., Ayala, O.: Pore-scale lattice Boltzmann modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer. Transp. Porous Media 103(3), 449–468 (2014)

    Article  Google Scholar 

  • Liu, H.H., Kang, Q.J., Leonardi, C.R., Schmieschek, S., Narvaez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20(4), 777–805 (2016)

    Article  Google Scholar 

  • Lucas, R.: Rate of capillary ascension of liquids. Kolloid Z. 23(15), 15–22 (1918)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 110, 268–293 (2013)

    Article  Google Scholar 

  • Meng, Q.B., Liu, H.Q., Wang, J., Pang, Z.X.: Effect of gravity on spontaneous imbibition from cores with two ends open in the frontal flow period. J. Pet. Sci. Eng. 141, 16–23 (2016)

    Article  Google Scholar 

  • Morrow, N.R., Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6(4), 321–337 (2001)

    Article  Google Scholar 

  • Pooladi-Darvish, M., Firoozabadi, A.: Cocurrent and countercurrent imbibition in a water-wet matrix block. SPE J. 5(1), 3–11 (2000)

    Article  Google Scholar 

  • Qasem, F.H., Nashawi, I.S., Gharbi, R., Mir, M.I.: Recovery performance of partially fractured reservoirs by capillary imbibition. J. Pet. Sci. Eng. 60(1), 39–50 (2008)

    Article  Google Scholar 

  • Qin, C.-Z., van Brummelen, H.: A dynamic pore-network model for spontaneous imbibition in porous media. Adv. Water Resour. 133, 103420 (2019)

    Article  Google Scholar 

  • Rangel-German, E.R., Kovscek, A.R.: A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resour. Res. 42(3), W03401 (2006)

    Article  Google Scholar 

  • Rokhforouz, M.R., Amiri, H.A.A.: Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium. Phys. Fluids 29(6), 062104 (2017)

    Article  Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, London (2011)

    Book  Google Scholar 

  • Suo, S., Liu, M., Gan, Y.: Modelling imbibition processes in heterogeneous porous media. Transp. Porous Media 126(3), 615–631 (2019)

    Article  Google Scholar 

  • Timm, K., Kusumaatmaja, H., Kuzmin, A.: The Lattice Boltzmann Method: Principles and Practice. Springer, Berlin (2016)

    Google Scholar 

  • Toelke, J., Freudiger, S., Krafczyk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 35(8–9), 820–830 (2006)

    Article  Google Scholar 

  • Tolke, J., Krafczyk, X., Schulz, M., Rank, E.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Trans. R. Soc. Lond. A 360(1792), 535–545 (2002)

    Article  Google Scholar 

  • Towler, B.F., Lehr, H.L., Austin, S.W., Bowthorpe, B., Feldman, J.H., Forbis, S.K., Germack, D., Firouzi, M.: Spontaneous imbibition experiments of enhanced oil recovery with surfactants and complex nano-fluids. J. Surfactants Deterg. 20(2), 367–377 (2017)

    Article  Google Scholar 

  • Wang, H., Yuan, X., Liang, H., Chai, Z., Shi, B.: A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity 2(3), 33–52 (2019)

    Article  Google Scholar 

  • Wang, X.K., Sheng, J.J.: Spontaneous imbibition analysis in shale reservoirs based on pore network modeling. J. Pet. Sci. Eng. 169, 663–672 (2018)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)

    Article  Google Scholar 

  • Zacharoudiou, I., Boek, E.S.: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations. Adv. Water Resour. 92, 43–56 (2016)

    Article  Google Scholar 

  • Zaeri, M.R., Hashemi, R., Shahverdi, H., Sadeghi, M.: Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water. Pet. Sci. 15(3), 564–576 (2018)

    Article  Google Scholar 

  • Zhang, S.J., Pu, H., Zhao, J.: Experimental and numerical studies of spontaneous imbibition with different boundary conditions: case studies of middle bakken and berea cores. Energy Fuels 33(6), 5135–5146 (2019)

    Article  Google Scholar 

  • Zheng, J.T., Chen, Z.Q., Xie, C.Y., Wang, Z.Y., Lei, Z.D., Ju, Y., Wang, M.R.: Characterization of spontaneous imbibition dynamics in irregular channels by mesoscopic modeling. Comput. Fluids 168, 21–31 (2018a)

    Article  Google Scholar 

  • Zheng, J.T., Ju, Y., Wang, M.R.: Pore-scale modeling of spontaneous imbibition behavior in a complex shale porous structure by pseudopotential lattice Boltzmann method. J. Geophys. Res. Solid Earth 123(11), 9586–9600 (2018b)

    Article  Google Scholar 

  • Zou, Q.S., He, X.Y.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Cai acknowledges the support from the National Natural Science Foundation of China (No. 41722403), the Hubei Provincial Natural Science Foundation of China (No. 2018CFA051), and the Fundamental Research Funds for the Central Universities (China University of Geosciences, Wuhan) (No. CUGGC04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchao Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cai, J., Sahimi, M. et al. A Study of the Role of Microfractures in Counter-Current Spontaneous Imbibition by Lattice Boltzmann Simulation. Transp Porous Med 133, 313–332 (2020). https://doi.org/10.1007/s11242-020-01425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01425-w

Keywords

Navigation