Skip to main content
Log in

Kinetics and Mechanism of the Reactions of Picolinic Acid with Dichloro-{1-alkyl-2-(arylazo)imidazole}palladium(II) Complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reaction between Pd(N,N′)Cl2 [N,N′ ≡ 1-alkyl-2-(arylazo)imidazole (N,N′) and picolinic acid (picH) have been studied spectrophotometrically at λ = 463 nm in MeCN at 298 K. The product is [Pd(pic)2] which has been verified by the synthesis of the pure compound from Na2[PdCl4] and picH. The kinetics of the nucleophilic substitution reaction have been studied under pseudo-first-order conditions. The reaction proceeds in a two-step-consecutive manner (A → B → C); each step follows first order kinetics with respect to each complex and picH where the rate equations are: Rate 1 = {k′0 + k′2[picH]0} × [Pd(N,N′)Cl2] and Rate 2 = {k′′0 + k′′2[picH]0}[Pd(N,O)(monodentate N,N′)Cl2] such that the first step second order rate constant (k2) is greater than the second step second order rate constant (k′′2). External addition of Cl (as LiCl) suppresses the rate. Increase in π-acidity of the N,N′ ligand, increases the rate. The reaction has been studied at different temperatures and the activation parameters (ΔH° and ΔS°) were calculated from the Eyring plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Lippard, in: I. Bertini, H.B. Gray, S.J. Lippard and J.S.Valentine (eds) Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994, p. 505; P.D. Beer, Acc. Chem. Res., 31, 71 (1998); Y.S. Yoo, Y.S. Sohn and Y.K. Do, J. Inorg. Biochem. 73, 187 (1999).

  2. J. Li L.M. Zheng I. King T.W. Doyle S.H. Chan (2001) Curr. Med. Chem. 8 121 Occurrence Handle1:CAS:528:DC%2BD3MXhtVSgtro%3D

    CAS  Google Scholar 

  3. P. Banerjee, Coord. Chem. Rev., 19, 190 (1999); B. Lippert, Coord. Chem. Rev., 18, 263 (1999); M. Kato, J. Takahashi, Y. Sugimoto, C. Kosuge, S. Kishi and S.J . Yano, J. Chem. Soc. Dalton Trans., 747 (2001).

  4. H. Chen, J.A. Parkinson, S. Parsons, R.A. Coxall, R.O. Gould and P.J. Sadler, J. Am. Chem. Soc., 124, 3064 (2002); A.H. Velders, H. Kooijman, A.L. Spek, J.G. Hassnoot, D.D. Vos and J. Reedijk, Inorg. Chem., 39, 2966 (2000).

    Google Scholar 

  5. T.K. Misra, D. Das, C. Sinha, P.K. Ghosh and C.K. Pal, Inorg. Chem., 37, 1672 (1998); P. Byabartta, P.K. Santra, T.K. Misra, C. Sinha and C.H.L. Kennard, Polyhedron, 20, 905 (2001); P.K. Santra, T.K. Misra, D. Das, C. Sinha, A.M.Z. Slawin and J.D. Woollins, Polyhedron, 18, 2869 (1999).

  6. S. Pal, D. Das, P. Chattopadhyay, C. Sinha, K. Panneerselvam and T.-H. Lu, Polyhedron, 19, 1263 (2000); G.K. Rauth, S. Pal, D. Das, C. Sinha, A.M.Z. Slawin and J.D. Woollins, Polyhedron, 20, 363 (2001).

  7. R. Roy, P. Chattopadhyay, C. Sinha and S. Chattopadhyay, Polyhedron, 15, 3361 (1996); D. Das, M.K. Nayak and C. Sinha, Transition Met. Chem., 22, 172 (1997); D. Das and C. Sinha, Transition Met. Chem., 23, 309 (1998).

  8. R. Roy, T.K. Misra, C. Sinha, A. Mahapatra and A. Sanyal, Transition Met. Chem., 22, 453 (1997); R. Roy, D. Das, M. Banerjee, C. Sinha and A. Mahapatra, Transition Met. Chem., 26, 205 (2001).

  9. R. Roy D. Das A. Mahapatra C. Sinha (2000) Inorg. React. Mech. 2 213 Occurrence Handle1:CAS:528:DC%2BD3cXotVWhtL0%3D

    CAS  Google Scholar 

  10. G.K. Routh S.K. Jasimuddin A. Mahapatra C. Sinha (2002) Inorg. React. Mech. 5 31

    Google Scholar 

  11. S. Pal, T.K. Misra, P. Chattopadhyay and C. Sinha, Proc. Indian Acad. Sci. (Chem. Sci.), 111, 687 (1999); P. Byabartta, S. Pal, T.K. Misra, C. Sinha, F.-L. Liao, K. Panneerselvam and T.-H. Lu, J. Coord. Chem., 55, 479 (2002); S. Senapati, U.S. Ray, P.K. Santra, C. Sinha, J.D. Woollins and A.M.Z. Slawin, Polyhedron, 21, 753 (2002).

  12. P. Atkins J.D. Paula (2002) Physical Chemistry EditionNumber7 Oxford University Press Oxford 956

    Google Scholar 

  13. S. Dey, M. Ray and P. Banerjee, Inorg. React. Mech., 2, 267 (2000); P.S. Sengupta, R. Sinha and G.S. De, Indian J. Chem., 40A, 509 (2001).

  14. F. Fasalo and R.G. Pearson, Mechanism of Inorganic Reactions. A study of Metal Complexes in Solution, 2nd edit., Wiley, New York, 1967; R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd edit., VCH, Weinheim, 1991

  15. C. Sinha, Ph.D. thesis, Jadavpur University, Kolkata-32, India, 1990.

  16. G.K. Rauth, S. Pal, D. Das, C. Sinha, A.M.Z. Slawin and J.D. Woollins, Polyhedron, 20, 363 (2001); S. Pal, D. Das, P. Chattopadhyay, C. Sinha, K. Panneerselvam and T.-H. Lu, Polyhedron, 19, 1263 (2000); J. Arpalahli and P. Lehikoinen, Inorg. Chem., 29, 2564 (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambikesh Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Sarkar, P.K. & Mahapatra, A. Kinetics and Mechanism of the Reactions of Picolinic Acid with Dichloro-{1-alkyl-2-(arylazo)imidazole}palladium(II) Complexes. Transition Met Chem 31, 389–395 (2006). https://doi.org/10.1007/s11243-006-0003-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0003-7

Keywords

Navigation