Skip to main content
Log in

Chromium(III)-isocinchomeronato and quinolinato complexes: kinetic studies in NaOH solutions and effect on 3T3 fibroblast proliferation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The aquation of chromium(III)-isocinchomeronato and quinolinato complexes, mer-[Cr(icaH)3]0 and mer-[Cr(quinH)3]0 (where icaH and quinH are N,O-bonded isocinchomeronic and quinolinic acid anion, respectively) was studied in NaOH solutions. The process leads to successive ligand liberation in the fully deprotonated species. The kinetics of the first ligand liberation were studied spectrophotometrically in the visible region. A mechanism is proposed in which the rate of the chelate-ring opening at the Cr–N bond is much faster than the rate of the Cr–O bond breaking. The rate-determining step is described by the rate law: k obs1 = k OH(1) + k O Q 2 [OH], where k OH(1) and k O are rate constants of the first ligand liberation from the hydroxo- and oxo-forms of the intermediate, respectively, and Q 2 is an equilibrium constant between these two protolytic forms. The first pseudo-first-order rate constants (k obs1) were calculated using SPECFIT software for an A → B → C reaction pattern. The results are compared with those determined in acidic medium. Kinetics of the second and third ligand liberation were also studied and values of successive pseudo-first-order rate constants (k obs2, k obs3) are [OH] independent. Effect of chromium(III)-quinolinato and isocinchomeronato complexes on 3T3 fibroblast proliferation was evaluated. Cytotoxicity of these complexes is low, suggesting they may be promising candidates as novel dietary supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Vergun O et al (1999) J Physiol 519:451

    Article  CAS  Google Scholar 

  2. Stone TW (1993) Pharmacology 45:309

    CAS  Google Scholar 

  3. Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Anal Biochem 301:21

    Article  CAS  Google Scholar 

  4. Grigss DL, Heden P, Smith KET, Rademecher W (1991) Photochemistry 30:2513

    Article  Google Scholar 

  5. Drew MGB, Matthews RW, Walton RA (1970) Inorg Nucl Chem Lett 6:277

    Article  CAS  Google Scholar 

  6. Sengupta P, Ghosh S, Mak TCW (2001) Polyhedron 20:975

    Article  CAS  Google Scholar 

  7. Patric BO, Stevens CL, Storr A, Thompson RC (2003) Polyhedron 22:3025

    Article  Google Scholar 

  8. Goher MAS, Mak TCW (1994) Struct Chem 5:165

    Article  CAS  Google Scholar 

  9. Gao H-L, Cheng C, Ding B, Shi W, Song H-B, Cheng P, Liao D-Z, Yan S-P, Jiang Z-H (2005) J Mol Struct 738:105

    Article  CAS  Google Scholar 

  10. Evans GW, Bowman TD (1992) J Inorg Biochem 46:243

    Article  CAS  Google Scholar 

  11. Mertz W (1993) J Nutr 123:62

    Google Scholar 

  12. Trent LK, Tiedingcancel D (1995) J Sports Med 35:273

    CAS  Google Scholar 

  13. Berner TO, Murphy MM, Slesinski RS (2004) Food Chem Toxicol 42:1029

    Article  CAS  Google Scholar 

  14. Slesinski RS, Clarke JJ, San RHC, Gudi R (2005) Mutation Res 585:86

    CAS  Google Scholar 

  15. Anderson RA, Bryden NA, Polansky MM (1997) J Am Coll Nutr 16:273

    CAS  Google Scholar 

  16. Rhodes MC, Hebert RA, Morinello EJ, Roycroft JH, Travlos GS, Abdo KM (2004) Food Chem Toxicol 28:21

    Google Scholar 

  17. Campbell WW, Lyndon JO, Anderson RA, Evans WJ (2004) Int J Sport Nutr Exerc Metab 14:430

    CAS  Google Scholar 

  18. Kita E, Głembiewska K (2007) Transit Metal Chem 32:56

    Article  CAS  Google Scholar 

  19. Kita E, Marai H, Zając K (2008) Transit Metal Chem 33:211

    Article  CAS  Google Scholar 

  20. Kita E, Szabłowicz M (2003) Transit Metal Chem 28:392

    Google Scholar 

  21. Rao L, Zhang Z, Kriese JI, Ritherdon B, Clark SB, Hess NJ, Rai D (2002) J Chem Soc Dalton Trans 276

  22. Buckingham DA (1980) Search 11:26

    CAS  Google Scholar 

  23. Richens DT (2005) Chem Rev 105:1961

    Article  CAS  Google Scholar 

  24. Shrivastava HY, Ravikumar T, Shanmugasundaram N, Babu M, Unni Nair B (2005) Free Radic Biol Med 38:58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Authorities of N. Copernicus University for the financial support of these studies with the Grant No. Ch-305. Hasan Marai wishes to thank Libyan Government for financial support of his Ph.D. studies in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, E., Marai, H., Jasiński, M. et al. Chromium(III)-isocinchomeronato and quinolinato complexes: kinetic studies in NaOH solutions and effect on 3T3 fibroblast proliferation. Transition Met Chem 33, 585–591 (2008). https://doi.org/10.1007/s11243-008-9084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9084-9

Keywords

Navigation