Skip to main content
Log in

Kinetics and mechanism of base hydrolysis of chromium(III) complexes with oxalates and quinolinic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Base hydrolysis of [Cr(ox)2(quin)]3− (where quin2− is N,O-bonded 2,3-pyridinedicarboxylic acid dianion) causes successive ligand dissociation and leads to a formation of a mixture of oligomeric chromium(III) species, known as chromates(III). The reaction proceeds through [Cr(ox)(quin)(OH)2]3− and [Cr(quin)(OH)4]3− formation. Dissociation of oxalato ligands is preceded by the opening of the Cr-quin chelate-ring at the Cr–N bond. The kinetics of the chelate-ring opening and the first oxalate dissociation were studied spectrophotometrically, within the lower energy d–d band region at 0.4–1.0 M NaOH. The pseudo-first-order rate constants (k obs0 and k obs1) were calculated using SPECFIT software for an A → B → C reaction pattern. Additionally, kinetics of base hydrolysis of [Cr(ox)(quin)(OH)2]3− and cis-[Cr(ox)2(OH)2]3− were studied. The determined pseudo-first-order rate constants were independent of [OH]. A mechanism is postulated that the reactive intermediate with the one-end bonded quin ligand, [Cr(ox)2(O-quin)(OH)]4−, formed in the first reaction stage, subsequently undergoes oxalates substitution. Kinetic parameters for the chelate-ring opening and the first oxalate dissociation were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Vergun O et al (1999) J Physiol 519:451. doi:10.1111/j.1469-7793.1999.0451m.x

    Article  CAS  Google Scholar 

  2. Stone TW (1993) Pharmacol Rev 45:309

    CAS  Google Scholar 

  3. Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Anal Biochem 301:21. doi:10.1006/abio.2001.5490

    Article  CAS  Google Scholar 

  4. Sas K, Robotka H, Toldi J, Vecsei L (2007) J Neurol Sci 257:221. doi:10.1016/j.jns.2007.01.033

    Article  CAS  Google Scholar 

  5. Harmon KM, Shaw KE (1999) J Mol Struct 513:219. doi:10.1016/S0022-2860(99)00118-0

    Article  CAS  Google Scholar 

  6. Loring JS, Karlsson M, Fawcett WR, Casey WH (2001) Polyhedron 20:1983. doi:10.1016/S0277-5387(01)00798-7

    Article  CAS  Google Scholar 

  7. Kita E, Gołembiewska K (2007) Transit Met Chem 32:56. doi:10.1007/s11243-006-0128-8

    Article  CAS  Google Scholar 

  8. Goher MAS, Youssef AA, Zhou ZY, Mak TCW (1993) Polyhedron 12:1871. doi:10.1016/S0277-5387(00)81425-4

    Article  CAS  Google Scholar 

  9. Okabe N, Miura J, Shomosaki A (1996) Acta Crystallogr Sect C 52:1610. doi:10.1107/S0108270196002314

    Article  Google Scholar 

  10. Patric BO, Stevens CL, Storr A, Thompson RC (2003) Polyhedron 22:3025. doi:10.1016/S0277-5387(03)00433-9

    Article  Google Scholar 

  11. Han Z-B, Ma Y, Sun Z-G, You W-S (2006) Inorg Chem Commun 9:844. doi:10.1016/j.inoche.2006.05.013

    Article  CAS  Google Scholar 

  12. Vincent JB (2000) Acc Chem Res 33:503. doi:10.1021/ar990073r

    Article  CAS  Google Scholar 

  13. Pan Q, Liu S, Tan Y-G, Bi Y-Z (2003) Agriculture 225:421

    CAS  Google Scholar 

  14. Slesinski RS, Clarke JJ, San RHC, Gudi R (2005) Mutat Res 585:86

    CAS  Google Scholar 

  15. Whittaker P, San RHC, Clarke JJ, Seifried HE, Dunkel VC (2005) Food Chem Toxicol 43:1619. doi:10.1016/j.fct.2005.05.003

    Article  CAS  Google Scholar 

  16. Storrs RW, King SR (2007) US Patent Appl. Publ. US 2007 254,864 (Cl. 514-184; A61K31/555)

  17. Kita E, Marai H, Zając K (2008) Transit Met Chem 33:211. doi:10.1007/s11243-007-9025-z

    Article  CAS  Google Scholar 

  18. Kita E, Marai H, Iglewski Ł (2009) Transit Met Chem 34:75. doi:10.1007/s11243-008-9160-1

    Article  CAS  Google Scholar 

  19. Kita E, Marai H, Jach K, Orłowska A (2009) Transit Met Chem 34:217. doi:10.1007/s11243-008-9181-9

    Article  CAS  Google Scholar 

  20. Kita E, Marai H, Jasiński M, Drewa T (2008) Transit Met Chem 33:585. doi:10.1007/s11243-008-9084-9

    Article  CAS  Google Scholar 

  21. Rao L, Zhang Z, Friese JI, Ritherdon B, Clark SB, Hess NJ, Rai D (2002) J Chem Soc Dalton Trans 267. doi:10.1039/b104154c

  22. Basolo F, Pearson RG (1967) Mechanism of inorganic reactions, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

Hasan Marai thanks Libyan Government for financial support of his Ph.D. studies in Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, E., Marai, H. Kinetics and mechanism of base hydrolysis of chromium(III) complexes with oxalates and quinolinic acid. Transition Met Chem 34, 585–591 (2009). https://doi.org/10.1007/s11243-009-9234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9234-8

Keywords

Navigation