Skip to main content
Log in

Detection of single nucleotide polymorphisms by the specific interaction between transition metal ions and mismatched base pairs in duplex DNA

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNPs) are base differences in the human genome. These differences are favorable markers for genetic factors including those associated with risks of complex diseases and individual responses to drugs. When two duplex DNAs with different types of SNPs are mixed and reannealed, the two novel heteroduplexes containing mismatched base pairs are formed in addition to the two initial perfectly matched homoduplexes. Heteroduplex analysis recognizing the newly formed mismatched base pairs is useful for SNP detection. Various strategies to detect the mismatched base pairs were devised due to the potential applications of SNPs. However, they were not always convenient and accurate. Here, we propose a novel strategy to detect the mismatched base pairs by the specific interaction between the Hg2+ ion and a T:T mismatched base pair and that between the Ag+ ion and a C:C mismatched base pair. UV melting indicated that the melting temperature of only the heteroduplexes with the T:T and C:C mismatched base pair specifically increased on adding the Hg2+ and Ag+ ion, respectively. Fluorescence resonance energy transfer analyses indicated that the intensity of fluorophore emission of only the fluorophore and quencher-labeled heteroduplexes with the T:T and C:C mismatched base pair specifically decreased on adding the Hg2+ and Ag+ ion, respectively. We propose that the addition of the metal ion could be a convenient and accurate strategy to detect the mismatched base pair in the heteroduplex. This novel strategy might make the heteroduplex analysis easy and eventually lead to better SNP detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cooper DN, Smith BA, Cooke HJ, Niemann S, Schmidtke J (1985) Hum Genet 69:201–205

    Article  CAS  Google Scholar 

  2. Shastry BS (2009) Methods Mol Biol 578:3–22

    Article  CAS  Google Scholar 

  3. Ding C, Jin S (2009) Methods Mol Biol 578:245–254

    Article  CAS  Google Scholar 

  4. Ragoussis J (2009) Annu Rev Genomics Hum Genet 10:117–133

    Article  CAS  Google Scholar 

  5. LaFramboise T (2009) Nucleic Acids Res 37:4181–4193

    Article  CAS  Google Scholar 

  6. Sara H, Kallioniemi O, Nees M (2010) Methods Mol Biol 576:61–87

    Article  CAS  Google Scholar 

  7. Arking DE, Chakravarti A (2009) Trends Genet 25:387–394

    Article  CAS  Google Scholar 

  8. Stolerman ES, Florez JC (2009) Nat Rev Endocrinol 5:429–436

    Article  CAS  Google Scholar 

  9. Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Nat Rev Genet 10:241–251

    Article  CAS  Google Scholar 

  10. Franke L, Jansen RC (2009) Methods Mol Biol 573:311–328

    Article  CAS  Google Scholar 

  11. Pacheco AG, Moraes MO (2009) Dis Markers 27:173–186

    CAS  Google Scholar 

  12. Thompson MD, Siminovitch KA, Cole DE (2008) Methods Mol Biol 448:139–185

    Article  CAS  Google Scholar 

  13. Rieder MJ, Livingston RJ, Stanaway IB, Nickerson DA (2008) Drug Metab Rev 40:241–261

    Article  CAS  Google Scholar 

  14. Nebert DW, Zhang G, Vesell ES (2008) Drug Metab Rev 40:187–224

    Article  CAS  Google Scholar 

  15. Voisey J, Morris CP (2008) Curr Drug Discov Technol 5:230–235

    Article  CAS  Google Scholar 

  16. Pang GS, Wang J, Wang Z, Lee CG (2009) Pharmacogenomics 10:639–653

    Article  CAS  Google Scholar 

  17. Hestekin CN, Barron AE (2006) Electrophoresis 27:3805–3815

    Article  CAS  Google Scholar 

  18. Costabile M, Quach A, Ferrante A (2006) Hum Mutat 27:1163–1173

    Article  CAS  Google Scholar 

  19. Bahr M, Gabelica V, Granzhan A, Teulade-Fichou MP, Weinhold E (2008) Nucleic Acids Res 36:5000–5012

    Article  CAS  Google Scholar 

  20. Kobori A, Nakatani K (2008) Bioorg Med Chem 16:10338–10344

    Article  CAS  Google Scholar 

  21. Zeglis BM, Barton JK (2008) Inorg Chem 47:6452–6457

    Article  CAS  Google Scholar 

  22. Ernst RJ, Song H, Barton JK (2009) J Am Chem Soc 131:2359–2366

    Article  CAS  Google Scholar 

  23. Zeglis BM, Pierre VC, Kaiser JT, Barton JK (2009) Biochemistry 48:4247–4253

    Article  CAS  Google Scholar 

  24. Granzhan A, Largy E, Saettel N, Teulade-Fichou MP (2010) Chemistry 16:878–889

    Article  CAS  Google Scholar 

  25. Ono A, Togashi H (2004) Angewandte Chemie-International Edition 43:4300–4302

    Article  CAS  Google Scholar 

  26. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) J Am Chem Soc 128:2172–2173

    Article  CAS  Google Scholar 

  27. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Chem Commun (Camb) 4825–4827

  28. Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2000) J Biol Chem 275:10150–10153

    Article  CAS  Google Scholar 

  29. Ouameur AA, Nafisi S, Mohajerani N, Tajmir-Riahi HA (2003) J Biomol Struct Dyn 20:561–565

    CAS  Google Scholar 

  30. Ouameur AA, Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2005) DNA Cell Biol 24:394–401

    Article  CAS  Google Scholar 

  31. Wu J, Du F, Zhang P, Khan IA, Chen J, Liang Y (2005) J Inorg Biochem 99:1145–1154

    Article  CAS  Google Scholar 

  32. Stellwagen E, Dong Q, Stellwagen NC (2007) Biochemistry 46:2050–2058

    Article  CAS  Google Scholar 

  33. Utsuno K (2008) Chem Pharm Bull (Tokyo) 56:247–249

    Article  CAS  Google Scholar 

  34. Li Y, Xia YL, Jiang Y, Yan XP (2008) Electrophoresis 29:1173–1179

    Article  CAS  Google Scholar 

  35. Liu J, Lu Y (2006) Methods Mol Biol 335:257–271

    CAS  Google Scholar 

  36. Li Y, Zhou X, Ye D (2008) Biochem Biophys Res Commun 373:457–461

    Article  CAS  Google Scholar 

  37. Lucassen AM, Julier C, Beressi JP, Boitard C, Froguel P, Lathrop M, Bell JI (1993) Nat Genet 4:305–310

    Article  CAS  Google Scholar 

  38. Le Stunff C, Fallin D, Schork NJ, Bougneres P (2000) Nat Genet 26:444–446

    Article  CAS  Google Scholar 

  39. Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain B, Kadowaki T, Froguel P (2002) Hum Mol Genet 11:2607–2614

    Article  CAS  Google Scholar 

  40. Gu HF, Abulaiti A, Ostenson CG, Humphreys K, Wahlestedt C, Brookes AJ, Efendic S (2004) Diabetes 53(Suppl 1):S31–S35

    Article  CAS  Google Scholar 

  41. Tanaka Y, Ono A (2008) Dalton Trans 4965–4974

  42. Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) J Am Chem Soc 129:244–245

    Article  CAS  Google Scholar 

  43. Yamane T, Davidson N (1961) J. Am. Chem. Soc. 83:2599–2607

    Article  CAS  Google Scholar 

  44. Yamane T, Davidson N (1962) Biochim Biophys Acta 55:780–782

    Article  CAS  Google Scholar 

  45. Katz S (1963) Biochim Biophys Acta 68:240–253

    Article  CAS  Google Scholar 

  46. Simpson RB (1964) J. Am. Chem. Soc. 86:2059–2065

    Article  CAS  Google Scholar 

  47. Izatt RM, Christensen JJ, Rytting JH (1971) Chem Rev 71:439–481

    Article  CAS  Google Scholar 

  48. Kosturko LD, Folzer C, Stewart RF (1974) Biochemistry 13:3949–3952

    Article  CAS  Google Scholar 

  49. Marzilli LG, Kistenmacher TJ, Rossi M (1977) J Am Chem Soc 99:2797–2798

    Article  CAS  Google Scholar 

  50. Yamane T, Davidson N (1962) Biochim Biophys Acta 55:609–621

    Article  CAS  Google Scholar 

  51. Daune M, Dekker CA, Schachman HK (1966) Biopolymers 4:51–76

    Article  CAS  Google Scholar 

  52. Jensen RH, Davidson N (1966) Biopolymers 4:17–32

    Article  CAS  Google Scholar 

  53. Eichhorn GL, Butzow JJ, Clark P, Tarien E (1967) Biopolymers 5:283–296

    Article  CAS  Google Scholar 

  54. Gorodetsky AA, Buzzeo MC, Barton JK (2008) Bioconjug Chem 19:2285–2296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Casio Science Promotion Foundation, Iketani Science and Technology Foundation, Nakatani Foundation of Electronic Measuring Technology Advancement, and Tateishi Science and Technology Foundation. This work was also supported in part by Grant-in-Aid for JSPS Fellows (08J07706 to T.K.) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Torigoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torigoe, H., Ono, A. & Kozasa, T. Detection of single nucleotide polymorphisms by the specific interaction between transition metal ions and mismatched base pairs in duplex DNA. Transition Met Chem 36, 131–144 (2011). https://doi.org/10.1007/s11243-010-9445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-010-9445-z

Keywords

Navigation